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A B S T R A C T   

Team-based worker selection has been extensively studied for Mobile Crowdsourcing (MCS), in which a set of 
workers are recruited to form a team to complete complex tasks collaboratively. However, existing studies face 
two typical challenges: 1) how to dynamically evaluate workers’ individual abilities and collaborative contri-
butions to the team; 2) how to select unknown workers to form a team with high quality at low cost. To tackle the 
above challenges, this paper proposes an Integration of Individual and Collaborative Abilities based Dynamic 
Worker Selection (IICA-DWS) algorithm to recruit excellent workers as a team in a high-quality and low-cost 
style. In the IICA-DWS algorithm, each worker’s individual ability and collaborative contribution to the team 
are evaluated more accurately using the Approximate Shapley Value (ASV). In addition, a high-quality team 
formation method is established to complete complex tasks at low cost. This involves the selection of both team 
leaders and team members. In this process, the Multi-Armed Bandit (MAB) model is adopted to dynamically 
select excellent workers using exploration and exploitation phases. Lastly, the IICA-DWS algorithm is evaluated 
through theoretical analysis and experimental results. The results show that the IICA-DWS algorithm can 
improve the data quality of tasks by 47.3% and reduce the cost by 61.7% on average. Moreover, the IICA-DWS 
algorithm has a high probability of approximating optimal results, which shows the best performance among the 
comparative algorithms.   

1. Introduction 

MCS has emerged as one of the most important solutions to complete 
tasks (Campana & Delmastro, 2022; Al-qaness et al., 2022; Nguyen & 
Zeadally, 2021; Bai et al., 2023). In MCS, workers carrying sensing de-
vices with abundant computational power (Wang, Liu, et al., 2024; Fu 
et al., 2024; Lu et al., 2024;) can complete multiple tasks, such as data- 
collecting tasks (Tang, Han, et al., 2023; Peng et al., 2024; Yu et al., 
2023). In these tasks, workers collect data in a certain area and report it 
to the platform, which has powerful data analysis and processing ability 
(Ouyang et al., 2023; Yang, Zeng, et al., 2023; Tang, Fan, et al., 2023). 
The platform then can process the data and construct it into various 

applications (or services) to complete the tasks (Wang, Liu, et al., 2024; 
Ouyang et al., 2023; Xu et al., 2022). The tasks mentioned above can be 
classified as simple tasks which do not show any relevance. Workers do 
not have to collaborate in these cases. 

There are many MCS applications, such as Aircloud for air quality 
measurement (Cheng et al., 2014), Sensorly (Sensorly, 2021) for con-
structing cellular/WiFi network coverage maps, Nericell (Mohan et al., 
2008), and VTrak (Thiagarajan et al., 2009) for traffic detection, and 
Geograph (Geograph, 2020) for street view collection. 

Due to the developments in micro-processing technology, the 
computational power of many sensing devices, such as smartphones, far 
exceeds that of computers from over a decade ago. Additionally, 
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complex tasks can be accomplished by the collaboration of numerous 
workers (Zhang et al., 2022), such as monitoring moving targets (Wang, 
Yang, et al., 2022). 

Nowadays, there are some MCS platforms oriented to completing 
complex tasks, such as Upwork1 (Jiang et al., 2022; Yin et al., 2023; 
Zhao et al., 2022). However, most of the proposed MCS studies are 
focused on simple tasks (Nguyen & Zeadally, 2021; Lu et al., 2024), and 
collaboration is unnecessary in this situation (Tang, Han, et al., 2023; 
Peng et al., 2024). In such studies, the criteria for selecting workers 
primarily revolves around the quality of task completion. These studies 
require a holistic consideration of issues such as the cost of completing 
tasks and the completion rate (Peng et al., 2024; Tang, Fan, et al., 2023). 

Most current research on worker recruitment for simple tasks in MCS 
is based on the following assumption: the quality and cost of recruiting 
workers satisfy submodular and linear functions, respectively (Kar-
aliopoulos, Telelis, et al., 2015; Wang, Yang, et al., 2017). The meaning 
of task completion quality satisfying a submodular function primarily 
entails two aspects: Firstly, it has monotonicity. That is, as the number of 
elements in the set increases, the gain produced by the set does not 
decrease. In other words, the more workers are recruited, the higher the 
quality of applications is, or at least it does not decrease. Secondly, it 
satisfies a set function with diminishing marginal benefits. When 
selecting workers for an application, as the number of workers increases, 
the rate at which the application quality improves gradually decreases. 
The cost of completing tasks satisfies a linear function. It means that the 
cost of recruiting workers is directly proportional to the number of 
recruited workers (Karaliopoulos, Telelis, et al., 2015; Wang, Yang, 
et al., 2017). 

In subsequent studies, there has been an increasing focus within MCS 
on handling more complex tasks. These tasks are composed of multiple 
sub-tasks. In some cases, such as workflow, sub-tasks have strict 
execution orders. The output of the previous task may serve as the input 
for the next. For these tasks, some studies also adopt the approach of 
selecting high-quality workers for each task individually. In other words, 
these studies treat complex tasks as simple ones. However, in such cases, 
the task completion quality does not necessarily satisfy a submodular 
function, and the cost may not necessarily follow a linear function. The 
reason for this is the issue of collaboration among workers in complex 
tasks. Suppose there is good collaboration among workers who are 
assigned to upstream and downstream tasks; even if the individual 
abilities of the workers are not high, the completion of tasks will be 
smoother, and the overall data quality of tasks will be increased. 
Conversely, suppose there is poor collaboration among workers. In that 
case, even if the individual abilities of the workers are high, the lack of 
solid collaboration among them will still result in low-quality task 
completion. 

For example, in the task of assigning several workers to monitor 
moving targets in different areas jointly, if there is good collaboration, 
the previous worker will notify the next worker of the characteristics 
and trajectories of the moving targets, allowing seamless integration 
between tasks and achieving high completion quality (Wang, Yang, 
et al., 2022). By contrast, weak collaboration among the workers may 
lead to a long delay in monitoring the tracked targets and low moni-
toring quality. In this case, the completion quality for complex tasks 
does not satisfy submodular functions. This means that increasing the 
number of workers does not necessarily improve target monitoring 
quality. Additionally, the cost does not necessarily follow a linear cost 
function because an increase in the number of workers may lead to an 
increase in the cost of coordination among them, resulting in a steeper 
increase rather than a linear function. 

To this end, team formation has been explored recently (Jiang et al., 
2022; Liao et al., 2021), in which the requester recruits workers with 
different qualities or skills to form a team to complete complex tasks 

collaboratively (Wang, Yang, et al., 2022; Jiang et al., 2022; Yin et al., 
2023; Zhao et al., 2022, Lykourentzou et al., 2016, Pan et al., 2016; 
Wang, Jiang, et al., 2016; Liao et al., 2021). There has been some 
research on Team-based Workers Recruitment (TWR) issues designed for 
MCS (Jiang et al., 2022; Liu, Luo, et al., 2015; Fathian et al., 2017). Even 
if in simple tasks, recruiting proper workers is already a challenging 
issue. In TWR issues, there are more factors, such as worker recruitment 
cost, quality, and task completion rate. These factors need to be 
considered simultaneously, making TWR issues multi-objective optimi-
zation problems (Nguyen & Zeadally, 2021; Lu et al., 2023; Tang, Han, 
et al., 2023; Peng et al., 2024; Liu et al., 2019). These issues are even 
more challenging because the collaboration among workers should be 
considered (Jiang et al., 2022; Yin et al., 2023; Zhao et al., 2022, 
Lykourentzou et al., 2016, Pan et al., 2016; Wang, Jiang, et al., 2016). 
There have been some studies on TWR where two main factors are 
considered during worker recruitment: (1) prioritizing workers with 
high individual abilities (Jiang et al., 2022; Zhao et al., 2022); (2) 
prioritizing workers with strong collaborative abilities (Jiang et al., 
2022; Zhao et al., 2022). 

There are various research methods on TWR issues. One of them 
involves the requester’s recruiting workers for each sub-task and form-
ing a team composed of all the recruited workers to complete the general 
complex task (Jiang et al., 2022; Zhao et al., 2022). However, in this 
approach, the team is formed by the requesters themselves, and it is 
difficult for the requesters to evaluate the collaboration among the 
workers, making it challenging to ensure effective collaboration. The 
stress in these methods lies in acquiring and evaluating information 
about the collaboration among workers. In Wu et al.’s study (Wu et al., 
2023), the collaboration among workers is measured by the frequency of 
their social interactions. If the frequency of interactions among workers 
is high, the workers are considered to have strong collaboration and are 
accorded priority in the selection process (Wu et al., 2023). However, 
strong interactions among workers do not necessarily indicate strong 
collaboration. Because, in practice, some interactions may be conflict- 
driven or adversarial rather than cooperative. Therefore, this team for-
mation approach fails to accurately reflect the inherent collaboration 
among workers, leading to less optimal results. 

Some studies propose a two-level recruitment method with a team 
leader (Xu et al., 2022). The main task of the requester is to select the 
team leader, and then the team leader selects the team members. The 
advantage of this method is that the team is formed by the team leader, 
who has more information about the workers’ collaborative abilities 
than the requester, potentially resulting in a team with stronger 
collaboration. However, the limitation of this approach is that it relies 
on the selection of the team leader. If a poor team leader is chosen, the 
overall quality of the team may suffer. Additionally, the platform cannot 
select team members, making it challenging to evaluate workers accu-
rately. In previous research on MCS, methods such as leaderless teams or 
workers in the team uploading collected data to the edge server are 
involved (Gad-Elrab et al., 2022). These methods significantly improve 
the efficiency of the MCS platform in collecting and managing data. 
However, none of the existing methods can take advantage of collabo-
ration within teams to improve platform efficiency. Therefore, the study 
of TWR still faces significant challenges, especially in the following 
aspects: 

(1) One of the most challenging issues is how to evaluate the indi-
vidual and collaborative abilities of workers within the team. In 
TWR, the team leaders and team members should possess the 
following characteristics: individual strong task completion 
abilities (Nguyen & Zeadally, 2021; Lu et al., 2023), and strong 
collaboration with other team members (Xu et al., 2022; Wang, 
Yang, et al., 2022; Jiang et al., 2022). In addition to these factors, 
team leaders are also expected to have strong social influence 
(Wu et al., 2023) to increase the probability of forming a strongly 
collaborative team (Wu et al., 2023). However, it is challenging 1 https://https://www.upwork.com/, accessed August 1, 2021. 
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to evaluate the workers’ abilities in complex tasks accurately. The 
main reason is that high-quality completion of complex tasks may 
not necessarily indicate workers’ strong individual abilities but 
could result from strong collaboration among workers.  

(2) Another challenging issue is selecting unknown workers to form a 
high-quality team at low cost. Recruiting workers for simple tasks 
in MCS is already problematic. Due to the enormous number of 
workers, the requester can only acquire information about a small 
portion of workers’ qualities (Tang, Han, et al., 2023; Gao et al., 
2021). Therefore, if the requester always selects high-quality 
workers from the known pool, the selection result would be 
only locally optimal (Tang, Han, et al., 2023; Gao et al., 2021). 
This is because the requester is unaware of the existence of 
higher-quality workers in the unknown pool. In TWR research, 
not only are there numerous workers with unknown qualities, but 
also the number of teams with unknown qualities formed by 
different combinations of workers far exceeds the number of in-
dividual workers. This significantly increases the complexity of 
the TWR issues in complex tasks compared to that in simple tasks. 
Therefore, one of the unresolved issues in worker recruitment is 
how to gradually approach optimal results by continuous explo-
ration to ensure that the system’s task completion quality im-
proves over time. 

To tackle the above challenges, in this paper, the IICA-DWS algo-
rithm is proposed to recruit excellent workers as a team to complete 
complex tasks collaboratively with high quality and low cost. Compared 
to previous research, we introduced a Shapley value-based method to 
the IICA-DWS algorithm to evaluate workers’ individual and collabo-
rative abilities. This allows for a more accurate identification of workers’ 
contributions. Based on this, an MAB-based model of team formation is 
proposed, which involves a two-stage construction process for both the 
team leaders and team members. This dynamic approach enables the 
performance of complex task completion to approach optimal results 
dynamically. In summary, the main innovations of this work are as 
follows: 

(1) An Integration of Individual and Collaborative Abilities Evalua-
tion (IICAE) approach is proposed to evaluate the comprehensive 
abilities of workers more accurately. Because of the high 
complexity of the traditional Shapley value approach, we have 
made improvements to make it applicable for evaluating 
workers’ contributions in MCS. Compared with previous evalu-
ation methods, the most significant difference is that the IICAE 
approach evaluates workers’ collaboration in practice rather than 
the frequency of workers’ social interactions. Thus, it is reason-
able to evaluate the results in practice during the subsequent 
worker selection process.  

(2) A worker selection method is established to build high-quality 
teams at low cost. Workers with strong comprehensive abilities 
and social influence are selected as team leaders, contributing to 
the formation of high-quality teams. Workers with high efficiency 
are then selected as team members. What sets this approach apart 
from previous research is that all selections are based on the IICA- 
DWS algorithm proposed in this paper.  

(3) Lastly, we adopted an MAB-based model to choose optimized 
workers by using the exploration and exploitation phases 
comprehensively. In most TWR solutions, worker selection was 
only based on known workers’ qualities, which lacked the ability 
to approach optimal results. However, the MAB-based model 
adopted in this work enables the IICA-DWS algorithm to achieve 
better performance. The IICA-DWS algorithm is evaluated 
through theoretical analysis and experimental results. The results 
demonstrate that the IICA-DWS algorithm can average an 
improvement in task completion quality by 47.3 %. Additionally, 

it can simultaneously reduce the cost by 61.7 % and minimize the 
cumulative regret by 27.3 % on average. 

The rest of this paper is organized as follows. In Section 2, the related 
works are reviewed. The system model and research objective are pre-
sented in Section 3. In Section 4, the IICA-DWS algorithm is introduced 
in detail. Then, Section 5 provides the performance evaluation. Finally, 
the conclusion is given in Section 6. 

2. Related works 

Recently, MCS has garnered significant attention in industry and 
academia as its development is thriving (Tian et al., 2020; Kar-
aliopoulos, Bakali, et al., 2020; Cai, Duan, et al., 2020). In MCS, devices 
with substantial computational resources and advanced sensing capa-
bilities are required. A significant number of workers equipped with 
such devices are recruited to complete various tasks like data collection, 
target monitoring, environment surveillance, and diverse computational 
tasks (Yucel, Yuksel, et al., 2020; Yucel & Bulut, 2020). 

In MCS, the tasks are mainly centered around data collection (Liu, 
Xie, et al., 2024). In such tasks, several workers are recruited to collect 
data in a specified area (Peng et al., 2024; Tang, Fan, et al., 2023). Most 
data collection tasks belong to the category of simple tasks, where each 
worker only needs to collect data from their designated location (Tang, 
Fan, et al., 2023). In other words, there is no need for collaboration 
among them. 

Some other tasks are referred to as complex tasks, which typically 
consist of multiple sub-tasks that are interrelated and have dependencies 
in their execution. To illustrate, the result of one task may become the 
starting condition for the next task (Jiang et al., 2022; Pan et al., 2016; 
Wang, Jiang, et al., 2016). An example of such complex tasks is work-
flow or Directed Acyclic Graph (DAG) tasks (Wang, Yu, et al., 2020). In 
MCS, such complex tasks include monitoring bird migration; when one 
worker detects a bird, he or she notifies the next worker of the area 
where the bird is likely to go, enabling continuous monitoring of the bird 
(Tang, Fan, et al., 2023). Moreover, due to the significant computational 
capabilities of the crowds, many DAG tasks can be distributed among 
workers for completion (Wang, Yu, et al., 2020). The recruitment of 
workers for complex tasks is much more challenging and has greater 
practical significance, which is the primary focus of this research. 

High task completion quality and low cost are two key issues in 
worker recruitment within MCS (Tang, Han, et al., 2023; Yang, Zeng, 
et al., 2023; Ren et al., 2018). However, achieving these two goals can be 
highly challenging. Firstly, workers invest their time, computational 
resources, and communication resources to complete tasks (Gao et al., 
2021; Yucel, Yuksel, et al., 2020). Thus, they require payments from 
requesters to motivate their active participation in tasks (Gao et al., 
2021; Yucel, Yuksel, et al., 2020). However, choosing high-quality 
workers is difficult, even for simple tasks. Generally, task completion 
quality is proportional to the effort invested by the workers, and 
different workers may possess various skills, resulting in different task 
completion qualities (Yang, Zeng, et al., 2023; Tang, Fan, et al., 2023). 
Therefore, worker selection becomes a multi-objective optimization 
problem (Liu et al., 2019; Ren et al., 2018). In practice, the selection 
process considers not only task completion quality and cost but also the 
coverage rate, which refers to the proportion of the monitoring area 
covered by the collected data. 

Under these conditions, research has shown that worker selection 
remains an NP-complete problem. As a result, several studies have 
solved this problem with heuristic algorithms to derive approximate 
solutions (Liu et al., 2019; Ren et al., 2018). The most common approach 
uses workers’ qualities or bids as the selection criterion. This means that 
workers with higher qualities and lower bids are prioritized. To reduce 
cost, Liu et al. (Liu et al., 2019) proposed a dynamic reward mechanism. 
In their approach, for tasks located in the central urban areas where 
many workers are willing to participate, the platform offers fewer 
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rewards to save system costs. On the other hand, in the less populated 
outskirts of the city, where there is a lower availability of workers, the 
platform provides higher rewards to motivate workers to participate in 
tasks actively (Liu et al., 2019). Adopting such a differential pricing 
strategy allows high performance and low cost. 

However, the worker selection methods in simple tasks often struggle 
to yield good results in complex tasks. Some complex tasks require 
strong collaboration among workers while handling upstream and 
downstream tasks (Wang, Yu, et al., 2020). Even if individual workers 
possess strong abilities, the overall quality of the complex tasks suffers if 
there is a lack of collaboration among them (Jiang et al., 2022; Zhao 
et al., 2022; Lykourentzou et al., 2016). Consequently, researchers have 
proposed various methods tailored for complex tasks. Initially, Xu et al. 
(Xu et al., 2022) proposed a worker recruitment method similar to the 
approach in our work. They aimed to address the issue of requester’s 
inability to recruit enough workers (Xu et al., 2022). They introduced a 
two-tiered worker recruitment method. In the first tier, requesters select 
some workers who can recruit more workers to expand the pool because 
of insufficient workers’ willingness to participate (Xu et al., 2022). In 
terms of rewards, requesters not only provide certain payments to 
directly recruited workers but also offer additional rewards to those who 
recruit other workers to incentivize further recruitment contributions 
(Xu et al., 2022). In their method, the role of directly recruited workers 
is similar to that of the team leaders in this paper. However, their 
method primarily aimed at addressing the issue of insufficient platform- 
recruited workers and did not consider collaboration among them. 
Therefore, this approach can still be considered a simplification for 
dealing with complex tasks. 

The significant difference between complex and simple tasks lies in 
the interaction among sub-tasks. Collaboration among workers is 
essential to achieve high-quality completion of complex tasks (Zhao 
et al., 2022). Wang et al.’s research (Wang, Yang, et al., 2022), 
belonging to this category, proposes that the quality of applications 
constructed by platforms is impacted significantly by the likelihood of 
worker collaboration rather than solely by the qualities of workers. 
Therefore, they introduced a strategy for task allocation based on 
worker collaboration tendencies, affirming the effectiveness of this 
approach. Some studies have validated the influence of worker collab-
oration on the quality of applications (Lu et al., 2023; Wang, Yang, et al., 
2022; Lykourentzou et al., 2016; Pan et al., 2016; Fathian et al., 2017; 
Wu et al., 2023). Nevertheless, they also do not provide methods to 
determine workers’ collaboration in practice. Estrada et al. (Estrada 
et al., 2017) proposed a computing framework for tasks with location 
and time constraints, using particle swarm optimization technology to 
select suitable workers based on existing constraints to ensure that the 
platform can obtain high-quality task results within a given time. How to 
efficiently manage worker information and collected data in the plat-
form is also an important issue. Yin et al. (Yin, Lu, et al., 2021) equated 
the problem to a directed maximum spanning tree problem and verified 
the effectiveness of the method through extensive experiments. How-
ever, in their study, the collaboration between workers was not studied 
and optimized. 

To deal with the problems mentioned above, some studies have 
proposed methods of using the intensity of social interactions among 
workers as a measure of collaboration (Wang, Jiang, et al., 2016), 
thereby suggesting how to select workers to form teams to tackle com-
plex tasks collaboratively. Wang et al. (Wang, Jiang, et al., 2016) 
consider the social interactions among workers as a reliable indicator of 
efficient team collaboration. Therefore, in such studies, higher social 
interactions among workers imply stronger collaboration, leading to 
higher-quality team formation for completing complex tasks (Wu et al., 
2023). Their approach closely resembles the methodology outlined in 
this work. Their method primarily consists of two key steps: the first step 
involves selecting a team leader, where workers engaging in more social 
interactions tend to assume leadership roles. The subsequent step in-
volves selecting team members, where those who have strong social 

interactions are more likely to be chosen (Wu et al., 2023). These 
methods excel in addressing the issue of how to evaluate actual 
collaborative abilities between workers compared to earlier research. 
However, the reality of social interactions does not always align with 
their assumption. Heightened interactions between workers do not 
necessarily signify high collaboration; if these interactions are solely 
work-related, competitive, or even hostile (such as legal disputes), the 
collaboration among workers might be negative. Genuine intimacy be-
tween individuals often does not solely manifest in the intensity of in-
teractions. Therefore, solely depending on the intensity of social 
interaction to represent worker collaboration can be inaccurate. 

Due to the effectiveness of TWR methods in enhancing the quality 
and reducing cost associated with completing complex tasks, it has 
garnered significant attention from scholars and researchers (Wang, 
Yang, et al., 2022; Jiang et al., 2022; Yin et al., 2023; Zhao et al., 2022; 
Lykourentzou et al., 2016; Pan et al., 2016; Wang, Jiang, et al., 2016). 
Given the nascent research stage in this field, there has not been a 
standardized set of terminologies used across various studies. For 
instance, in Jiang et al.’s study (Jiang et al., 2022), selecting multiple 
workers to form a batch is essentially identical to recruiting them to 
form a team in this work. Meanwhile, Yin et al. (Yin et al., 2023) 
introduce the concept of a Cooperative Unit (CU), in which workers are 
organized into CUs. In essence, the concept of CU bears similarity to the 
notion of a team. 

At present, some excellent methods for the TWR problem have been 
proposed. For example, Abououf et al. (Abououf et al., 2019) solved the 
problem of allocating tasks and workers in MCS by clustering similar 
tasks and selecting worker groups through genetic algorithms, and using 
taboo search algorithms to minimize task completion time and total 
distance traveled by workers, which is very important in the completion 
of complex tasks. The experimental results show that the Group-based 
multi-task Worker Selection model can effectively solve the task allo-
cation problem of the platform and greatly improve the efficiency of the 
platform in completing MCS tasks. 

Above all, it is evident that the key to recruiting workers for complex 
tasks lies in evaluating their collaboration. Using the intensity of social 
interactions among workers as an indicator of collaboration is merely a 
preliminary method and may not authentically reflect the true situation. 
Therefore, this paper proposes an empirical approach. The Shapley 
value, originating from game theory, addresses the problem of allo-
cating value v(m) created by the cooperation of m individuals (Chen 
et al., 2022; Xie & Lui, 2022). The data quality of task Q(m) involving m 
workers can be evaluated, which reflects the collaboration of m workers. 
Subsequently, the application of the Shapley value method enables the 
precise calculation of each worker’s contribution to the successful 
completion of the complex task. Workers making significant contribu-
tions indicate substantial involvement in completing the complex task. If 
replacing workers with lesser contributions with a different set improves 
the quality of completing the complex task Q(m), it implies that the 
newly introduced workers collaborate more effectively. This method 
allows for testing and comparing the strengths of collaboration among 
different workers, guiding the selection of highly collaborative workers 
to improve the quality of task completion. Moreover, this empirical 
approach utilizes actual collaboration strengths obtained from workers 
in the completion of complex tasks. Thus, it can reflect collaboration 
among workers objectively, which previous methods failed to achieve. 
Azzam et al. (Azzam, Mizouni, et al., 2018) proposed an excellent group 
recruitment method, Stable-GRS, and introduced stability as an impor-
tant criterion for evaluating the MCS platform. While ensuring the 
effectiveness of the method, it also ensures the stable operation of the 
platform in continuous complex tasks. In the Stable-GRS method, they 
introduced the Shapley value to evaluate the actual contribution of 
participants to data quality, which can be regarded as a reflection of the 
comprehensive ability of MCS participants. Through this method, the 
platform will select the most suitable participants to complete the cor-
responding perception tasks through a greedy algorithm. Experiments 
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based on real-life datasets show that their method has extremely high 
stability and can effectively guarantee the performance of the platform. 
However, directly employing the Shapley value method incurs signifi-
cant complexity, making it challenging to be applied in TWR strategies. 
Thus, further research in this area is required. 

There remains another important issue in TWR that current research 
has yet to address: how to optimize the selection of workers for better 
results. Previous studies often focus on selecting high-quality workers 
based on their known abilities to accomplish tasks. However, this 
approach merely represents a localized optimization method. It opti-
mizes the selection of workers with already known qualities, leaving out 
numerous workers with unknown qualities from the pool of eligible 
selections. While simple tasks have been well studied in terms of dy-
namic worker selection, methods for complex tasks are notably lacking. 
MAB models are effective in dynamically selecting workers. In such 
models, the platform frequently selects high-quality workers from the 
known pool. However, there is still a probability of selection from the 
pool of workers with unknown qualities (Tang, Han, et al., 2023; Gao 
et al., 2021; Cai et al., 2022). If the workers chosen during exploration 
show high qualities, it enriches the pool of usable workers with high- 
quality candidates, ultimately enhancing the overall quality of worker 
selection. However, if the qualities of workers selected during explora-
tion are low, it only impacts the result of the current worker selection. 
The combined exploration–exploitation approach used in MAB models 
brings the results closer to optimal outcomes (Tang, Han, et al., 2023; 
Gao et al., 2021; Cai et al., 2022). Nevertheless, TWR for complex tasks 
is still in its infancy. One of the key issues this paper aims to address is 
how to make TWR approximate optimal results for complex tasks. 

3. Problem statement 

3.1. System model 

In this work, the MCS network studied is similar to those in most 
research, as depicted in Fig. 1. The platform employs workers within a 
limited budget and enables collaboration among them to accomplish 
tasks, such as collaborative data collection, thereby optimizing the data 
quality. Specifically, it can be divided into the following three main 
components: 

Platform: It accepts task requests from the requester, analyzes and 
assigns them to suitable workers. After the tasks are completed, it 
collects the data reported by the workers, analyzes and processes it, 
and then returns the results to the requester. 
Workers: They refer to individuals who are equipped with sensing 
devices or have sensing abilities. They are numerous and can move 
within a specified area. When they receive tasks, they travel to the 
destinations and upload the data to earn rewards. 

Requester: He or she initiates task requests to the platform, receives 
data provided by the platform after the task completion, and pays the 
platform for the cost of collecting and processing data. 

Definition 1 (Task, Budget) Assume the platform has received m 
spatiotemporal sensitive data collection task requests from the 
requester, defined as t = {t1,t2,⋯,tm}. Each task has a fixed budget, and 
the platform’s total cost for recruiting workers to complete tasks cannot 
exceed it. Specifically, each task has the following characteristics:  

1) The total budget for task tj is Bj.  
2) Task tj requires recruiting at least Rj workers (Rj ≥ 2).  

3) The duration of task tj is specified as 
[
Tstart

tj ,Tend
tj

]
.  

4) The spatial scope covered by task tj is defined as Ltj . 

Definition 2 (Worker, Bid, Team) Assume there are n workers in 
the system, defined as W = {w1, w2, ⋯, wn}. They have the following 
characteristics:  

1) Each worker can only engage in one task at a time.  
2) Each worker is required to upload his or her social connections to the 

platform during registration (Yang & Wang, 2015).  

3) For worker wi, the online period is defined as the set 
[
Tstart

wi
,Tend

wi

]
.  

4) For worker wi, the coverage area is defined as the set Lwi . 

MCS employs a reverse auction mechanism to recruit workers. The 
requester and the platform act as buyer and seller, respectively. Products 
being sold are services for task completion and data collection. After the 
platform initiates a task, all candidate workers will report their bids to 
the platform according to the cost required for collecting data. We define 

the bids of workers for task tj as βj =
{

βj
1,β

j
2,⋯,βj

n

}
. Following the result 

of the reverse auction, the platform selects suitable workers to form 
several teams, denoted as g =

{
g1, g2,⋯, gk

}
based on the bids reported 

by workers and information from worker profiles. For task tj, we use xj
p 

to denote whether team gp participates in task tj: when the value of xj
p is 

1, it indicates that team gp is involved in completing task tj. At the same 
time, all workers in a team can only participate in one current task. 
Otherwise, it signifies that the team would not participate. 

Definition 3 (Ground Truth Data, Sensing Quality) Ground Truth 
Data (GTD) represents the true and reliable data in a task. In MCS, GTD 
can be used to evaluate the accuracy of the data collected by the plat-
form. It can also serve as a benchmark to measure the quality of data 
reported by workers and evaluate their sensing abilities. Due to the in-
fluence of the precision of sensing devices and random factors in real 
scenarios, the data sensed by workers often differs from the GTD. 
Therefore, to describe the accuracy of workers in collecting data during 

Fig. 1. Workflow of MCS.  
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task tj, we define the sensing qualities of workers as qj =
{

qj
1,q

j
2,⋯,qj

n

}
. 

The sensing qualities of workers are associated with both individual and 
various external factors. Consequently, for worker wi participating in 
different tasks tj and tj́ , qj

i may not be equivalent to qj́
i . 

Sensing quality can describe the accuracy of individual workers in 
providing data to the platform. In practical situations, workers within a 
team often engage in collaboration. When workers collaborate effec-
tively, the overall data quality of tasks tends to be higher. Consequently, 
solely evaluating workers based on sensing qualities while overlooking 
their collaborative behaviors is inadequate. Such an evaluation system 
might not maximize the platform’s benefits. When collaboration within 
a team is extremely weak or when workers intentionally act against each 
other, it can deteriorate the overall data quality of tasks even if indi-
vidual workers possess strong abilities. To thoroughly investigate 
workers’ collaboration, we define the concepts of collaborative degree 
and collaborative ability. 

Definition 4 (Collaborative Degree, Collaborative Ability) 
Collaborative degree describes the strength of collaboration among 
workers while jointly completing tasks. For worker wi, the collaborative 
degree with other workers is defined as χi = {χi1, χi2, ⋯, χin}. The 
collaborative degree between a worker wi and himself, namely χii, is 
always 1. Meanwhile, collaborative ability depicts the average collab-
orative degree of a worker with all other workers. A stronger collabo-
rative ability often implies that the worker can make a larger 
contribution to the team. 

However, collaborative ability is a specific attribute of the workers 
and is challenging to compute directly. Therefore, in Section 4, we will 
introduce the IICA-DWS algorithm, which applies the ASV to evaluate 
the contributions of workers in tasks. This approach allows us to 
consider workers’ collaborative abilities in the evaluation of workers. 

Definition 5 (Social Intensity) Social intensity is a quantitative 
measure of the strength of social connections between two individuals. 
Within a team, workers with stronger social connections may establish 
more positive collaboration with a greater number of workers while 
executing tasks, thereby devoting higher contributions to the team. 
However, it is challenging to quantitatively evaluate the strength of 
these social connections solely based on the relationship between two 
workers in the social network. Hence, we introduce the concept of social 
intensity. For two workers wa and wb in the system having a social 
connection, their social intensity is defined as: 

Cab =
F(wa) ∩ F(wb)

F(wa) ∪ F(wb)
(1) 

We measure the strength of social connections between two workers 
using Jaccard similarity (Niwattanakul et al., 2013). Here, F(wa) rep-
resents the friend set of worker wa. If two workers share more mutual 
friends, it indicates a stronger social connection. By calculating social 
intensity, the platform not only confirms the existence of social con-
nections between workers but also evaluates their strengths. 

Definition 6 (Social Network) The social network is constituted by 
aggregating the social connection information uploaded by workers 
during their registration. As shown in Fig. 2, each worker is represented 
as a node, with connected nodes indicating the worker’s friends. The 
edge values between nodes represent the social intensity among these 
friends. Through the social network, we obtain insights into workers’ 
social connections within the MCS system. Based on this network, the 
platform is enabled to select suitable workers to form teams with strong 
social connections. 

Through the social network, we can determine if there is a social 
connection between any two workers and the strength of that connec-
tion by social intensity. However, there is a problem yet to be solved in 
this method. Consider a worker with numerous social connections, all of 
which are relatively weak, versus another worker with fewer connec-
tions, but all of them are strong. In such cases, deciding which worker 
holds a more significant position in the social network becomes 

challenging. 
Definition 7 (Social Influence) To solve the problem mentioned 

above, we introduce social influence to comprehensively evaluate the 
strength and breadth of social connections. It can indicate an individual 
worker’s significance within the social network. Specifically, the social 
influence of worker wa is defined as: 

ζa =
∑n

b=1
Cab⋅yab (2) 

Here, yab denotes whether there exists an edge between wa and wb in 
the social network, indicating the presence (assigned a value of 1) or 
absence (assigned a value of 0) of a social connection between the two 
workers. 

Definition 8 (Comprehensive Sensing Ability) To evaluate 
workers’ individual and collaborative abilities comprehensively, we 
define comprehensive sensing ability. After the completion of task tj, the 

comprehensive sensing abilities of workers are represented as ψ j =
{

ψ j
1,

ψ j
2, ⋯, ψ j

n

}
. By computing this value, the platform can have a unified 

standard to evaluate workers. Simultaneously, to illustrate all workers’ 
comprehensive abilities within a team, we define the team’s sensing 
ability, which is the average of the comprehensive sensing abilities of all 
workers within the team participating in task tj: 

ϕj
p =

∑n

i=1
ψ j

i⋅v
j
i (3) 

Here, vj
i denotes whether worker wi participates in task tj. If yes, vj

i =

1; otherwise, it is 0. 

3.2. Research objective 

Definition 9 (Platform Efficiency) To better illustrate the plat-
form’s ability in collecting data, we define platform efficiency E to 
describe the performance of the platform in worker evaluation and team 
formation. Platform efficiency can be represented as follows: 

E(ϕ,B, β) =
1
m
∑m

j=1

Bj⋅
∑k

p=1ϕj
p⋅xj

p
∑n

i=1βj
i⋅v

j
i

(4) 

After task tj is completed, the platform receives the data submitted by 

all workers who have participated in this task, represented as dj =
{

dj
1,

dj
2, ⋯, dj

n

}
. Typically, a dataset from a task approximates a Gaussian 

distribution. The platform aims to increase the data quality while 
minimizing the payments to workers to maximize its profits. To achieve 
this goal, based on the available information, the platform must try its 
best to select efficient workers to participate in tasks. Additionally, total 
costs and budgets fluctuate due to variations in the difficulty and 
complexity of different tasks. Therefore, we consider the cost-to-budget 
ratio as relative cost in Eq. (4), enabling a fair comparison between 

Fig. 2. Social Network.  
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different tasks. 
Our objective is to maximize the comprehensive sensing abilities of 

recruited workers while minimizing the total cost. In other words, the 
aim is to maximize platform efficiency under the constraints of budget 
and the number of workers recruited for tasks. Therefore, we can model 
the MCS problem addressed in this study as follows: 

Maximize: 

E(ϕ,B, β) (5)  

Subject to: 
∑n

i=1
vj

i ≥ Rj, ∀tj ∈ t (6)  

∑n

i=1
βj

i • vj
i ≤ Bj,∀tj ∈ t (7) 

Specifically, the platform needs to recruit a sufficient number of 
workers to participate in tasks to ensure data accuracy. Eq. (6) denotes 
that the number of workers recruited for task tj must exceed the mini-
mum required number of workers Rj. Eq. (7) represents that the total 
cost of task tj must not exceed the budget Bj allocated for task tj. These 
two constraints enable the platform to avoid issues related to insufficient 
worker participation or excessively high costs in any tasks, thus pre-
venting a decrease in platform efficiency or a reduction in data quality. 
The description of major notations in this article are shown in the 
Table 1. 

4. IICA-DWS algorithm 

In this section, we introduce the IICA-DWS algorithm. As shown in 
Fig. 3, it considers both individual and collaborative abilities for worker 
evaluation and team formation. It iteratively computes the contributions 
of workers within teams and offers an advanced method for dynamic 
worker evaluation and selection. This method aims to maximize data 
quality within a limited budget, in other words, to maximize platform 
efficiency. Detailed explanations of the IICAE approach will be pro-
vided. We will also outline the selection method of team leaders and 
team members within the IICA-DWS algorithm. Additionally, we will 
conduct a theoretical analysis of certain properties of the IICA-DWS 
algorithm. 

4.1. IICAE approach based on Shapley value 

4.1.1. Basic idea 
In order to form more efficient teams, the platform needs to evaluate 

the performance of each worker before making selections. However, 
individually calculating the precise collaborative abilities of all workers 
involves high computational complexity and cost. Hence, we devised the 
ASV to comprehensively assess workers’ contributions within teams. 
According to the characteristics of ASV, we designed the IICAE 
approach, ensuring a reasonable evaluation of workers throughout the 
entire process. 

In real scenarios, certain tasks may involve multimodal data, with 
each modality possessing different data characteristics. Therefore, 
directly comparing data from different modalities is unfair. We require a 
more detailed evaluation of data across different modalities. Suppose 
worker wi participates in task tj, and the data collected by the worker for 
this task is represented as dj

i, comprising multiple modalities. Each 
dimension of the data corresponds to a modality in the task. For the p-th 

dimension of data, the platform computes the clustered data dj
(p) from 

the single-dimensional data set dj(p) collected by all workers partici-
pating in this task. Specifically, we cluster the data collected by workers 
using the Density-based spatial clustering of applications with noise 
(DBSCAN) method. DBSCAN method is very robust to noise and outliers. 
In MCS, it enables the platform to set more accurate standards and 
reduce the impact of outliers on the system. This clustered data is 
considered as the GTD for that dimension. Following Def. 3, we calculate 
the worker’s sensing quality qj

i by computing the standard Euclidean 
distance: 

qj
i =

1

exp

⎛

⎜
⎜
⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
P
∑P

p=1

[
dj

i(p) − d
j
(p)
]2

sj(p)2

√
√
√
√
√

⎞

⎟
⎟
⎠

(8) 

Here, sj(p) represents the standard deviation of the p-th dimension of 
data. Through this design, we can uniformly assess data from different 
modalities, ensuring fairness in the platform’s evaluation of workers. 

Within the IICAE approach, the platform comprehensively evaluates 
both the individual and collaborative abilities of workers. We now focus 
on explaining how to leverage workers’ collaborative abilities, assisting 
the platform with a more detailed and rational evaluation of workers to 
improve platform efficiency further. 

Firstly, to visually illustrate how collaboration within a team in-
fluences the platform’s strategies, we may consider a simplified sce-
nario: Suppose the platform assigns a task and recruits three workers, 
wa, wb, and wc, to form a team. Assume wa, wb, and wc possess similar 
individual sensing qualities, and their respective collaborative abilities 
are χa = 1.0, χb = 1.5, χc = 0.7. From the perspective of collaborative 
abilities, worker wb positively contributes to the team’s sensing ability, 
while worker wc has a negative impact. If a worker with higher collab-
orative ability replaces worker wc, the team’s efficiency might be 
potentially improved. However, in the scenarios when the collaboration 
is weaker, replacing worker wc might decrease the team’s efficiency 
since worker wc has higher individual sensing quality q̌c. In such cases, 
the platform faces challenges in making decisions. 

Furthermore, in reality, not every two workers within a team 
necessarily exhibit significant collaborative relationships. Also, as the 
effects of collaboration manifest in workers’ individual sensing qualities, 
precisely computing these collaborative relationships would be 
extremely challenging. The extensive computation and task results 
required may render the method impractical within MCS. 

The analysis above indicates that it is not advisable to evaluate in-
dividual and collaborative abilities separately. Therefore, we need to 
find a more comprehensive evaluation method. 

Shapley (Shapley, 1953) proposed fundamental requirements for the 

Table 1 
Description of major notations.  

Notations Description 

m Number of tasks 
n Number of workers 
Bj Budget for completing task tj 
βj

i 
Bid of worker wi participating in task tj 

dj
i 

Data collected by worker wi in task tj 

qj
i 

Sensing quality of worker wi in task tj 
χi Collaborative ability of worker wi 

Cab Social intensity between workers wa,wb 
ζi Social influence of worker wi 

Aj The set of workers participating in task tj 
ϕj

p Sensing ability of the team gp after task tj 

θ̂
j
i 

ASV of worker wi after task tj 

γj
i 

Regulatory factor of worker wi after task tj 

hj
i 

RCR of worker wi after task tj 

hj
i
+ UCB index of worker wi after task tj 

ψ j
i 

Comprehensive sensing ability of worker wi after task tj 
E Platform efficiency 
pj

i 
The number of tasks that worker wi has participated in after the task tj 

Rj The minimum required number of workers 
ωj

i 
SV of worker wi after task tj  
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fair allocation of team profits, represented by four main properties: 
balance, symmetry, additivity, and zero element. Balance demands that 
the team profits should be fairly distributed among all team members. 
Symmetry dictates that members with equal marginal contributions 
should receive equal rewards. Additivity implies that the sum of rewards 
for two tasks should be the sum of individual task rewards. Zero element 
stipulates that if a member makes no marginal contribution, he or she 
should not receive any reward. 

Based on the statements above, the Shapley value can assist the 
platform in understanding the contribution of individual workers within 
this team while ensuring fairness to meet our requirements. Considering 
all workers W = {w1,w2,⋯,wn} within the same team, let the set S be a 
subset of all workers completing the task except wi. The function Q(S)
represents the sensing quality the subset S exhibits. Hence, the marginal 
contribution of an individual worker wi to the subset S is 
Q(S ∪ {wi}) − Q(S). The Shapley value computes the marginal contri-
bution of an individual worker wi in all possible worker combinations: 

θi =
1
|W|

∑

S⊆W\{wi}

Q(S ∪ {wi}) − Q(S)
(
|W| − 1

|S|

)
(9) 

From Eq. (9) above, it is evident that if the platform needs to 
compute the Shapley value for a particular worker wi, it should 
enumerate all subsets S and conduct extensive and repetitive computa-
tions of the sensing qualities exhibited by these subsets. Most impor-
tantly, not every worker participates in a certain task. Hence, directly 
computing the Shapley value using Eq. (9) in the MCS problem is 
impractical. Additionally, existing research (Chalkiadakis, 2022) has 
demonstrated that the problem of deriving the Shapley value of a team is 
NP-hard. Therefore, we suggest a cost-effective approach to estimate 
each worker’s contribution. 

Definition 10 (Partial Shapley Value) In task tj, the Partial Shapley 
Value (PSV) of worker wi is defined as: 

ωj
i =

1
⃒
⃒Aj
⃒
⃒

∑

S⊆Aj\{wi}

Q(S ∪ {wi}) − Q(S)
(⃒
⃒Aj
⃒
⃒ − 1

|S|

)
(10) 

In this equation, Aj represents the entire set of workers participating 
in task tj. ωj

i computes the total marginal contribution of worker wi in 
task tj relative to the whole set of workers involved in this specific task. 
Compared to the traditional Shapley value, it confines the computation 
process within the current team, significantly reducing computational 
complexity. 

However, in practical applications, different tasks vary in difficulty 
and are influenced by complex unknown factors. This discrepancy 
makes direct comparison of PSVs across different tasks unfeasible. 
Therefore, we normalize the PSVs for each task with a min–max 
normalization to mitigate the impact of this factor. Min-max normali-
zation maintains the relative values of workers’ PSVs within a certain 
task, making it more suitable for evaluating the relative contributions of 
individual workers across different tasks. 

Definition 11 (Normalized Partial Shapley Value) For a given 
worker wi

(
wi ∈ Aj) with PSV ωj

i, we define his or her Normalized Partial 
Shapley Value (NPSV) in task tj as: 

N
(

ωj
i

)
=

ωj
i − min(ωj)

max(ωj) − min(ωj)
(11) 

It is important to note that individually computing NPSVs for all 
workers will incur significant computational costs. Thus, based on the 
characteristics of PSV, we have devised a more efficient method for 
computing NPSV. Suppose two workers, wa and wb, participating in task 
tj. The difference in their PSVs can be calculated as follows: 

Fig. 3. The framework of IICA-DWS.  
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Δωj
a,b =

1
⃒
⃒Aj
⃒
⃒

∑

S⊆Aj\{wa}

Q(S∪{wa}) − Q(S)
(⃒
⃒Aj
⃒
⃒ − 1
|S|

) −
∑

S⊆Aj\{wb}

Q(S∪{wb}) − Q(S)
(⃒
⃒Aj
⃒
⃒ − 1
|S|

)

=
1

⃒
⃒Aj − 1

⃒
⃒

∑

S⊆Aj\{wa ,wb}

Q(S∪{wa}) − Q(S∪{wb})
(⃒
⃒Aj
⃒
⃒ − 2
|S|

)

(12) 

We assume that in task tj, the worker with the lowest PSV is wd, and 
the worker with the highest PSV is wc. Hence, based on the PSVs of 
workers wa and wb, we can calculate their NPSVs more efficiently. For 
example, worker wb’s NPSV can be calculated as: 

N
(

ωj
b

)
=

ωj
b − min(ωj)

max(ωj) − min(ωj)

=

[
ωj

a − min(ωj)
]
−
[
ωj

a − ωj
b

]

[
max(ωj) − ωj

a

]
−
[
min(ωj) − ωj

a

]

=
Δωj

a,d − Δωj
a,b

Δωj
c,a − Δωj

d,a

(13) 

Definition 12 (Approximate Shapley Value) However, due to 
interference from randomness, evaluating workers solely based on the 
NPSVs from a single task is impractical. To evaluate the workers’ con-
tributions within the team more accurately, we calculate their ASVs 
based on the NPSVs across all historical tasks. For worker wi, after the 
completion of task tj, his or her ASV is determined as: 

θ̂
j
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

N
(

ωj
i

)
,wi ∈ Aj, pj

i = 1

b
(

pj
i − 1

)

pj
i

⋅θ̂
j− 1
i +

(1 − b)pj
i + b

pj
i

⋅N
(

ωj
i

)
,wi ∈ Aj, pj

i ∕= 1

θ̂
j− 1
i ,wi ∕∈ Aj

(14) 

The hyperparameter b(0 ≤ b ≤ 1) controls the update rate of a 
worker’s ASV. In real scenarios, as tasks progress, variations of a 
worker’s attributes, such as expertise and equipment precision, may 
potentially alter their Real Contribution Degrees (RCD) within the team. 
Therefore, it becomes necessary for the platform to dynamically adjust 
the relevance of historical task results based on the actual situation. For 
instance, setting b to 0 implies that a worker’s ASV relies entirely on the 
NPSV obtained in the current task, disregarding all historical records. 
Conversely, setting it to 1 indicates the platform will completely cease 
the update of a worker’s ASV. In this case, the platform will evaluate him 
or her solely based on historical records. 

From Eq. (14), each worker’s ASV is updated after the completion of 
each task. Thus, the platform can estimate the workers’ contributions to 
the team based on their performance in all participated tasks. Specif-
ically, when workers engage in a task for the first time, the platform 
considers their NPSVs from that task as their ASVs for subsequent cal-
culations. For other workers with historical participation in tasks, their 
ASVs are computed as a linear combination of their ASVs from the 
previous tasks and their NPSVs from the current task. If workers do not 
participate in the current task, their ASVs remain unchanged. 

Overall, since NPSV is defined as a worker’s relative contribution 
within a team for a specific task, it exhibits significant instability. 
However, ASV can compensate for the limitations of NPSV and consider 
all historical records of tasks. This not only improves the accuracy of the 
platform’s evaluation of a worker’s contribution but also considers sit-
uations where a worker’s ability may change over time, making it 
suitable for more complex scenarios. 

Definition 13 (Weighted Sensing Quality) Similar to the format of 
ASV, to evaluate workers, the platform will incorporate a worker’s 
sensing quality across historical tasks and the current task as a worker’s 

performance might noticeably change over time. We define the 
weighted sensing quality of worker wi after the completion of task tj as: 

q̂j
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

qj
i,wi ∈ Aj, pj

i = 1

b
(

pj
i − 1

)

pj
i

⋅q̂j− 1
i +

(1 − b)pj
i + b

pj
i

⋅qj
i,wi ∈ Aj, pj

i ∕= 1

q̂j− 1
i ,wi ∕∈ Aj

(15) 

A high-confidence ASV can reasonably evaluate a worker’s contri-
bution to the team and effectively optimize the platform’s decisions. 
However, in practical scenarios, a worker’s Shapley value within the 
team may exhibit an unknown distribution and can be influenced by 
various nonlinear factors. This might result in significant fluctuations in 
NPSV for certain tasks. Thus, it may cause the platform’s computation of 
a worker’s comprehensive sensing ability to be less precise. In severe 
cases, it might lead to a collapse of the entire evaluation system. In other 
words, when a worker has participated in relatively few tasks, the 
confidence in his or her ASV will be lower. In these cases, the platform 
cannot evaluate the worker by directly assessing his or her ASV but 
needs to accumulate sufficient historical task records to improve confi-
dence in ASV. 

Specifically, when the confidence in ASVs is low, the platform leans 
towards evaluating workers based on their weighted sensing qualities. 
As workers complete more tasks, the confidence in their ASVs increases. 
At this point, the platform can rely more on ASVs for worker evaluation. 
Therefore, under different circumstances, it is crucial to dynamically 
integrate workers’ weighted sensing qualities and their ASVs to evaluate 
their comprehensive sensing abilities, facilitating the platform’s rational 
selection of workers. After the completion of task tj, the comprehensive 
sensing ability of worker wi is represented as: 

ψ j
i =

⎧
⎪⎨

⎪⎩

zγj
i⋅θ̂

j
i +
(

1 − zγj
i

)
⋅q̂j

i,wi ∈ Aj

ψ j− 1
i ,wi ∕∈ Aj

(16) 

Here, z(0 ≤ z ≤ 1) is a hyperparameter regulating the maximum 
proportion of ASV within a worker’s comprehensive sensing ability. The 
platform can adjust z based on actual circumstances. γj

i represents the 
regulatory factor of worker wi and determines the specific evaluation 
approach. The platform controls the proportion of his or her weighted 
sensing ability in the comprehensive evaluation using γ and combines it 
with his or her ASV to derive the current comprehensive sensing ability 
ψ j

i. As the confidence in ASVs increases, the platform tends to rely more 
on ASVs for worker evaluation. The regulatory factor for worker wi can 
be calculated as follows: 

γj
i =

⎧
⎪⎪⎨

⎪⎪⎩

1

1 + e− (αj
i − ρ)

,wi ∈ Aj

γj− 1
i ,wi ∕∈ Aj

(17)  

αj
i = pj

i⋅e
− Var(N(ωi) ) (18) 

Here, ρ is a hyperparameter used to control the initialization process 
of the regulatory factor γ. A larger ρ requires a longer initialization 
process for γ. In other words, more task results are needed to increase γ 
significantly. From Eqs. (17–18), it is evident that γ is also influenced by 
the variance of a worker’s historical NPSVs. This implies that if a 
worker’s performance within the team remains consistently stable, the 
regulatory factor will increase more rapidly, allowing the platform to 
rely more on the ASV for evaluation. 

It is important to note that the regulatory factor is designed in the 
form of a sigmoid function. Its initial growth rate is relatively low, 
aiming to improve confidence in ASVs through multiple tasks when the 
number of tasks is limited. As the reliability of ASVs gradually gets 
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validated, the primary evaluation criterion for workers transitions from 
their weighted sensing qualities toward ASVs. Through this design, we 
have developed a rational and effective approach called IICAE. With this 
approach, the platform ensures the overall data quality while continu-
ally identifying higher-quality workers. 

4.1.2. Detailed algorithm 
According to the provided solution, IICAE is depicted in Algorithm 1. 

The IICAE algorithm mainly contains two layers of loops and some linear 
operations. Therefore, its time complexity is approximately O

(
n2). 

Initially, the platform collects the complete dataset dj of task tj and 
computes the clustered data as GTD. Following Eq. (8), the platform 
sequentially computes the sensing qualities of all workers involved in 
this task. For data involving multiple modalities, the platform uses 
standard Euclidean distance for computation. Specifically, the platform 
first calculates the standard deviation sj of each modality. It then uses 
the data of each dimension collected by the worker to obtain the 
worker’s sensing quality qj

i in this task (Step 3). 
Next, based on Eq. (10), the platform computes the PSV of each 

worker by evaluating the marginal contribution exhibited by each set S 
(Step 5). Subsequently, the platform updates the profiles of all workers 
involved in this task using NPSVs. According to Eq. (11), the platform 
applies min–max normalization to the PSVs to derive the workers’ 
NPSVs (Step 9). According to Eq. (14), for workers without historical 
task records, the platform computes their ASVs, regulatory factors, and 
weighted sensing qualities (Steps 10–13). 

For other workers participating in task tj, the platform calculates 
each worker’s current ASV using Eq. (14) (Step 15). Then, it computes 
each worker’s weighted sensing quality via Eq. (15) (Step 16). Simul-
taneously, based on the variance of each worker’s NPSV from individual 
historical tasks, the platform updates the worker’s γ using Eq. (17) (Steps 
17–18). 

Finally, the platform combines the worker’s ASV and weighted 
sensing quality to calculate the comprehensive sensing ability using Eq. 
(16) (Step 19). Additionally, for workers not participating in task tj, the 
platform does not modify their worker profiles (Steps 21–25).  

Algorithm 1: Integration of Individual and Collaborative 
Abilities Evaluation (IICAE) 

Input:ψ j− 1, θ̂
j− 1

, γj− 1,Aj ,dj ,pj− 1, q̂j− 1
,b,ρ,z 

Output:ψ j , θ̂
j
, γj,pj, q̂j 

1: Initialize:i = 1, ∀tj ∈ t;
2: for each wi in Aj do 

3: qj
i = 1/exp

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1/P)
∑P

p=1

(
dj

i(p) − dj
(p)
)2

/sj(p)2
√ )

;

4: for each subset S of Aj\{wi} do 

5: ωj
i + = (Q(S ∪ {wi}) − Q(S) )/

(
⃒
⃒Aj
⃒
⃒

( ⃒
⃒Aj⃒⃒ − 1

|S|

))

;

6: for each wi in W do 
7:  if wi ∈ Aj then 
8: pj

i = pj− 1
i +1;

9:  N
(

ωj
i

)
=
(

ωj
i − min

(
ωj)

)
/
(
max

(
ωj) − min

(
ωj) );

10:  if pj
i == 1 then 

11: θ̂
j
i = N

(
ωj

i

)
;

12: γj
i = 1/(1+exp(ρ) ;

13: q̂j
i = qj

i;14: else 

15: θ̂
j
i =

(
b
(

pj
i − 1

)
/pj

i

)
⋅θ̂

j− 1
i +

((
(1 − b)pj

i + b
)
/pj

i

)
⋅N
(

ωj
i

)
;

16: q̂j
i =

(
b
(

pj
i − 1

)
/pj

i

)
⋅q̂j− 1

i +
((

(1 − b)pj
i + b

)
/pj

i

)
⋅qj

i ;

17: αj
i = pj

i⋅exp
(
− Var

(
N
(

ωj
i

)))
;

18: γj
i = 1/

(
1+exp

(
− αj

i + ρ
))

;

19: ψ j
i = zγj

i ⋅θ̂
j
i +
(

1 − zγj
i

)
⋅q̂j

i ;

20: else 

(continued on next column)  

(continued ) 

Algorithm 1: Integration of Individual and Collaborative 
Abilities Evaluation (IICAE) 

21: γj = γj− 1;

22: θ̂
j
= θ̂

j− 1
;

23: ψ j
i = ψ j− 1

i ;

24: pj
i = pj− 1

i ;

25: q̂j
i = q̂j− 1

i ;

26: return 
(
ψ j, θ̂

j
, γj, pj, q̂j)

;

4.1.3. Theoretical analysis 
Theorem 1 IICAE ensures the effectiveness of worker evaluation. 
Proof. In IICAE, we utilize the regulatory factor γ to regulate the 

evaluation process dynamically. During the execution of tasks, due to 
the randomness and fluctuations in worker performance, there tends to 
be a disparity between the worker’s ASV and RCD. We assume that all 
factors contributing to the deviation of ASV from RCD can be repre-
sented by a nonlinear function f(p, ν) initiating with a large positive 
value. Its output is influenced by the number of the worker’s historical 
tasks p and other nonlinear factors ν. Therefore, the ASV computed by 
the platform for worker wi can be expressed as: 

θ̂
j
i = θj

i⋅f
(

pj
i, ν
)

(19) 

To minimize the error in estimating workers’ contribution degrees, 
we need to dynamically adjust worker evaluation strategies according to 
the characteristics of the nonlinear function f(p, ν). When a worker 
participates in fewer tasks, the confidence in the worker’s ASV increases 
relatively slowly due to the influence of randomness. However, when 
the worker engages in a sufficient number of tasks, the ASV approxi-
mates the RCD. Hence, despite the influence of various nonlinear factors 
on f(p, ν), the value of the function tends to decrease as the number of 
the worker’s historical tasks increases. Thus, ∂f(p,ν)

∂p < 0. To ∀pa→0, 
∂f(pa ,ν)

∂p ≈ 0; To ∀pc→ + ∞, f(pc, ν) ≈ 1, ∂f(pc ,ν)
∂p ≈ 0. At the same time, ∃pb ∈

p satisfies ∂2f(pb ,ν)
∂p2 = 0, ∂f(pb ,ν)

∂p = max
(

∂f(p,ν)
∂p

)

. In other words, when p ∈

(0, pb) or p ∈ (pb,+∞), ∂f(p,ν)
∂p < 0; when p = pb, ∂f(pb ,ν)

∂p = min
(

∂f(p,ν)
∂p

)

. 

According to the characteristics of the nonlinear function f(p, ν)
mentioned above, we have designed the regulatory factor γ to minimize 
the influence of f(p, ν) on the platform. By differentiating Eq. (17), we 
obtain: 

γʹ(α) = d
dα

(
1

1 + e− (α− ρ)

)

= −

(
1

1 + e− (α− ρ)

)2

⋅
d
dα
(
1+ e− (α− ρ) )

= −

(
1

1 + e− (α− ρ)

)2

⋅
(
− e− (α− ρ) ) =

e− (α− ρ)

(1 + e− (α− ρ) )
2 (20) 

From the above analysis, when α ∈ (0, ρ) or α ∈ (ρ,+∞), it satisfies 
dγ(α)

dα > 0; when α = ρ, dγ(ρ)
dα = max

(
dγ(α)

dα

)

. This indicates that the regu-

latory factor γ exhibits an opposite trend to the nonlinear function 
f(p, ν). γ increases as the confidence in the worker’s ASV grows. 
Consequently, the platform chooses a more conservative evaluation 
strategy when the value of f(p, ν) is relatively high. In other words, it 
primarily evaluates the worker’s performance based on weighted 
sensing quality. Conversely, when f(p, ν) is lower, the platform relies 
more on the worker’s ASV for evaluation. With this design, the platform 
dynamically adjusts its evaluation strategy in different scenarios. 

□. 

4.2. Selection of team leaders 

4.2.1. Basic idea 
In practical situations, the social relationships existing between 

Y. Han et al.                                                                                                                                                                                                                                     



Expert Systems With Applications 254 (2024) 124442

11

workers in an MCS system may have a great impact on the collaboration 
between them. Therefore, in the IICA-DWS algorithm, the platform will 
use a leader-centered social network to enhance the active collaboration 
within the team, thereby improving the platform efficiency as much as 
possible. When the platform selects workers (including team leaders and 
team members) to form a team, two fundamental spatiotemporal con-
straints must be satisfied: the duration of the task must be covered by the 
worker’s online period, and the spatial scope of the task must be within 
the worker’s coverage area. Only workers who meet both these essential 
spatiotemporal constraints and express willingness to participate in the 
task will be considered as candidates for team leaders We(l) or team 
members We(m) of the task. In other words, for any worker wi ∈ {We(l),
We(m)} involved in a certain task, he or she must satisfy the following 
two constraints: 
⎧
⎪⎨

⎪⎩

[
Tstart

tj ,Tend
tj

]
⊆
[
Tstart

wi
,Tend

wi

]

Ltj ⊆ Lwi

(21) 

In the IICA-DWS algorithm, the platform starts team formation with 
the selection of team leaders. After receiving task requests from the 
requester, the platform gathers all workers who are willing to become 
team leaders. These workers are referred to as candidate team leaders 
and are represented as the set We(l). During the selection process, the 
primary considerations include these candidate team leaders’ social 
influence and comprehensive sensing abilities. 

The social influence reflects both the number of social friends and the 
strength of social connections a worker has within the current sensing 
area. As in Def. 7, social influence allows for a quantitative represen-
tation of a worker’s significance within the social network. Selecting a 
team leader with strong social influence contributes to reinforcing social 
connections within the team and enhancing collaboration among 
workers. 

Furthermore, when there are k tasks with overlapping sensing areas 
occurring simultaneously, the platform will select the top k candidate 
team leaders according to the comprehensive rankings. And the plat-
form will select a leader for each task in order. We believe that candi-
dates with higher comprehensive rankings are more likely to organize 
teams with higher efficiency. Consequently, team leaders with higher 
comprehensive rankings will be assigned to tasks with higher budgets. 

Specifically, when the platform is about to execute new tasks, it se-
lects appropriate team leaders of the tasks in the following steps: 

1) Search for all workers who meet the temporal and spatial re-
quirements of these tasks.  

2) Issue a recruitment call for team leaders and gather all candidates.  
3) Rank the social influence and comprehensive sensing abilities of all 

candidate team leaders separately, denoted as Rank(ζ) and Rank
(
ψ j).   

Algorithm 2: Selection of team leaders 

Input:We(l),C,y,ψ j ,k 
Output:Ws(l)
1: Initialize: i = 1, Rank(ζ) = We(l),Rank

(
ψ j) = We(l), ∀tj ∈ t;

2: for each wi in We(l) do 
3: ζi =

∑n
k=1Cik⋅yik;

4: for a from 1 to |We(l) | − 1 do 
5: for b from 1 to |We(l) | − a do 
6: if ζb < ζb+1 then 
7: Swap Rank(ζb) and Rank(ζb+1);

8: if ψ j
b < ψ j

b+1 then 

9: Swap Rank
(

ψ j
b

)
and Rank

(
ψ j

b+1

)
;

10:Rank(W) = Rank(ζ)⋅Rank
(
ψ j);

11: for top kwi in Rank(W) do 
12: Ws(l) = Ws(l) + {wi};

13: return Ws(l);

4) Calculate the comprehensive rankings of all candidate team leaders: 
Rank(W) = Rank(ζ)× Rank

(
ψ j).  

5) Select the top-ranked k candidates as the team leaders, denoted as 
Ws(l). 

4.2.2. Detailed algorithm 
According to the basic idea in section 4.2.1, the IICA-DWS algorithm 

selects team leaders through Algorithm 2. The platform gathers all 
workers who are willing to become team leaders and meet the spatio-
temporal constraints of the task as candidate team leaders We(l). If there 
are k tasks with identical spatiotemporal constraints, the platform will 
select the top k candidates according to comprehensive rankings and 
make these workers team leaders. 

Firstly, the platform utilizes Eq. (2) to consider both the total number 
of social connections and the social strength of these relationships, in 
order to compute the candidates’ social influence ζ (Step 3). Subse-
quently, based on the social influence, the platform ranks the candidate 
team leaders and acquires the ranking Rank(ζ) (Step 7). 

Similarly, the platform ranks the comprehensive sensing abilities ψ j 

of the candidate team leaders and gets the ranking Rank
(
ψ j) (Step 9). 

Finally, the platform multiplies these two rankings to compute the 
comprehensive ranking of all candidate team leaders, denoted as 
Rank(W) (Step 10). Subsequently, based on this ranking, the platform 
determines the set of chosen team leaders, represented by Ws(l) (Steps 
11–12). 

4.3. Selection of team members 

4.3.1. Basic idea 
After selecting the team leaders, the platform chooses appropriate 

team members under the constraints of Eqs. (5–6). The remaining un-
successful candidate team leaders and other potential participants for 
this task become candidate team members, denoted by the set We(m). In 
this section, we will outline the specific method the IICA-DWS algorithm 
uses to select team members. 

MAB is a widely used reinforcement learning model for making on-
line decisions in uncertain environments. Essentially, the MAB model is 
a bandit with multiple arms. Each arm is associated with rewards ob-
tained from an unknown distribution. Players aim to maximize rewards 
by strategically exploring and exploiting the arms of the bandit within a 
limited number of chances. 

In an MCS system, on the one hand, the platform needs to select the 
best workers through online evaluations under specific conditions. On 
the other hand, the results of each worker completing tasks follow some 
unknown distribution. Thus, the selection of team members can be 
viewed as an MAB problem. The platform’s selection of workers is 
identical to the action of pulling the arms of bandits in essence. The 
results of task completion can be represented as the rewards of bandits. 
In MAB problems, players aim to maximize their cumulative rewards. 
Similarly, the platform aims to recruit superior workers at lower cost 
and achieve higher platform efficiency in an MCS system. 

In the member selection process, the platform should consider two 
factors: first, gaining more knowledge about newly added workers and 
those with lower confidence in their performance (so-called exploration) 
to identify better workers; second, selecting workers with higher con-
fidence in performance and better cost-effectiveness to join the team (so- 
called exploitation). The selection problem of team members can be 
addressed using the MAB model, which essentially represents an online 
learning and decision-making process. 

In the initial phase, the platform recruits workers tentatively to un-
derstand their efficiency in task execution. Since the performance of 
these workers is unknown at this stage, each worker is treated equally. 
The platform examines these workers sequentially, recruiting the first 
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set of workers {w1,⋯,wi}, followed by the second set 
{
wi+1,⋯,wj

}
, and 

so forth, ensuring that all workers have completed at least one task. 
After the release of task tj, the platform conducts a reverse auction 

where candidate workers report their bids βj =
{

βj
1, βj

2,⋯, βj
n

}
for the 

current task. Simultaneously, the platform calculates the maximum bid 
for each worker as βj

max = Bj/Rj and ensures that the number of workers 
employed by the platform is not less than Rj and the total cost does not 
exceed the total budget Bj. If a candidate worker’s reported bid exceeds 
βj

max, the platform disregards his or her task request directly. 
In order to complete the tasks successfully, all candidates need to 

meet the spatiotemporal constraints of tasks demonstrated in Eq. (21). 
Additionally, the platform must select workers with high comprehensive 
sensing abilities while paying the lowest possible bids. If a worker 
possesses strong ability but quotes a high bid, he or she might conse-
quently reduce platform efficiency. Thus, solely relying on a worker’s 
comprehensive sensing ability for evaluation is not enough; his or her 
bid should also be taken into account. We define the Revenue-Cost-Ratio 
(RCR) based on the comprehensive sensing ability and bid as hj

i = ψ j
i/βj

i. 
Through workers’ RCRs, the platform can precisely evaluate the effi-
ciency of each worker in completing tasks. Therefore, it can develop 
more efficient recruitment strategies. 

According to Def. 5, stronger social connections among team mem-
bers and team leaders can foster a tighter social bond within the team, 
thereby enhancing collaborative behaviors. Thus, in the process of 
selecting team members, it is essential to evaluate the social connections 
between candidate team members and the team leader. 

Additionally, in typical scenarios, the workers’ comprehensive 
sensing abilities follow an unknown distribution. This causes uncer-
tainty in the short term. Thus, it may potentially lead to inaccurate 
evaluations of workers. In real scenarios, directly using workers’ RCRs 
for evaluation may make it almost impossible to re-recruit certain highly 
efficient members due to their occasional low-efficiency performances. 
Hence, we define the Upper Confidence Bound (UCB) index to address 

this issue, represented by the set hj+ =
{

hj
1
+
, hj

2
+
, ⋯, hj

n
+
}

. After the 

completion of task tj, the UCB index of worker wi is defined as: 

hj
i
+
= hj

i + κCil⋅yil + ξj
i (22)  

ξj
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ⋅ln
(∑n

k=1pj− 1
k

)

pj− 1
i

√
√
√
√ (23) 

Here, κ(0 ≤ κ ≤ 1) is a hyperparameter. Depending on various sce-
narios in the real world, the platform can adjust κ to modify the weight 
of the social intensity between the candidate team members and the 
team leader during the selection process. ξj

i serves as an additive factor. 
It gives less frequently chosen workers more chances to be recruited 
again. δ, as a hyperparameter, offers flexibility to our strategy. The 
platform must adjust its value according to the actual circumstances in 
order to approximate the optimal results. This design helps reduce the 
impact of randomness on the platform. Thus, the platform is enabled to 
explore the workers more thoroughly. 

During the team formation process for task tj, the platform contin-
uously selects workers with the highest UCB indexes to join the team 
until the budget Bj for that task is exhausted. After the task is completed, 
the platform records and updates all the relevant attributes of the 
workers (including ASV, UCB index, etc.) and awaits the next task.  

Algorithm 3: Selection of team members 

Input:We(m),βj ,ψ j,pj− 1,Bj,Rj,Cl,yl, κ, δ 
Output:Ws(m)

1: Initialize: i = 1, Rank
(

hj+
)

= We(m), ∀tj ∈ t;

2:βj
max = Bj/Rj;

3: for each wi in We(m) do 

(continued on next column)  

(continued ) 

Algorithm 3: Selection of team members 

4: if βj
i > βj

max then 
5: We(m) = We(m) − {wi};

6:  if pj− 1
i == 0 then 

7: Ws(m) = Ws(m) + {wi};

8: We(m) = We(m) − {wi};

9: hj
i = ψ j

i/βj
i;

10: ξj
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ⋅ln
(∑n

k=1pj− 1
k

)
/pj− 1

i

√

;

11:hj
i
+
= hj

i +κCil⋅yil +ξj
i;

12:  for a from 1 to |We(m) | − 1 do 
13:  for b from 1 to |We(m) | − a do 

14:  if hj
b
+
< hj

b+1
+

then 

15: Swap Rank
(

hj
b
+
)

and Rank
(

hj
b+1

+
)
;

16: for wi in Rank
(

hj+
)

do 

17: if Bj ≥ βj
i then 

18: Ws(m) = Ws(m) + {wi};

19: Bj = Bj − βj
i ;

20: else 
21: break ;
22: return Ws(m);

4.3.2. Detailed algorithm 
Based on the analysis above, the IICA-DWS algorithm leverages the 

MAB model for selecting team members, as outlined in Algorithm 3. 
Initially, the platform determines the maximum bid βj

max for an indi-
vidual worker based on the requirements of task tj. Specifically, the 
requirements include the minimum team size Rj and the budget Bj 

determined in advance (Step 2). If the bid of any candidate team 
member exceeds βj

max, the platform will not select him or her for the task 
since the platform considers the overall efficiency and data quality 
(Steps 4–5). To efficiently evaluate the comprehensive sensing abilities 
of new workers, the platform gives them priority to participate (Steps 
6–8). 

The platform calculates the candidate team members’ RCRs based on 
their comprehensive sensing abilities ψ j

i and the bids βj
i they reported for 

the current task (Step 9). Additionally, the platform computes the social 
intensity Cil between each candidate team member and the team leader. 
Simultaneously, using Eq. (23), the platform calculates the additive 
factor ξj

i based on the number of tasks completed by the candidate team 
members (Step 10). Using these three parameters, the platform com-

putes the UCB indexes hj
i
+

for all remaining candidate team members 

(Step 11) and ranks them to obtain Rank
(

hj+
)

(Steps 12–15). 

Finally, the platform recruits workers continuously based on 

Rank
(

hj+
)

until the budget Bj is exhausted. At that point, the platform 

will have the set of workers participating in this task, denoted as Ws(m)

(Steps 16–21). 

4.3.3. Theoretical analysis 
In this section, we will demonstrate the rationality and fairness of the 

platform through the IICA-DWS algorithm in recruiting workers and 
forming teams. 

Theorem 2 IICA-DWS algorithm satisfies the principle of platform 
rationality. 

Proof In the IICA-DWS algorithm, the platform determines the total 
budget Bj at the beginning of each task, which also serves as the 
maximum bid for the team. This ensures that the platform does not 
suffer from losses. The platform calculates the maximum task cost for 
each worker participating in the task, denoted as βj

max = Bj/Rj. This 
guarantees that the platform can reliably make profits while ensuring 
task completion quality. Additionally, the platform can dynamically 
adjust Bj based on its actual situation as long as the total budget does not 
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exceed the total payment from the requester. Therefore, the IICA-DWS 
algorithm complies with the principle of platform rationality. 

□. 
Theorem 3 IICA-DWS algorithm satisfies the principle of fairness. 
Proof To better illustrate fairness, we may consider a simplified MCS 

system based on the IICA-DWS algorithm, where this system consistently 
selects k workers as a set for each task. To illustrate more clearly, we 
assume that in this system, the impact of the additive factor is relatively 
minimal. For two workers, wa and wb, assume they both have relatively 
high UCB indexes and have participated in multiple tasks while having 
no social connections with the team leader, and ψ j

a < ψ j
b. For worker wa, 

his or her RCR is denoted as hj
a = ψ j

a/βj
a. We may assume that wa ranks as 

the (k − 1)-th worker according to RCR, while the k-th worker’s RCR is 
denoted as hʹ. In subsequent tasks, workers wa and wb need to ensure that 
their RCRs are greater than h́  to guarantee more opportunities for 
participation. In a critical scenario where hj+1

a = hj+1
b = hʹ, it follows that 

βj+1
a = ψ j+1

a /hʹ and βj+1
b = ψ j+1

b /hʹ, which results in βj+1
a < βj+1

b . This in-
dicates that compared to worker wa, worker wb can appropriately in-
crease his or her reported bid while ensuring continued selection by the 
platform, thereby attaining higher profits. 

However, in a real MCS system, the team’s size might vary, and a 
worker’s sensing result in a particular task could be influenced by 
incidental factors related to themselves or external conditions. Hence, 
worker wb has to decide whether to maintain or decrease the bid to 
ensure continued selection by the platform, as he or she aims for a more 
stable long-term benefit. From the analysis above, it is evident that 
elevated RCRs lead to more profits and opportunities for the workers to 
participate in tasks. Therefore, the IICA-DWS algorithm satisfies the 
principle of fairness. 

□. 

5. Performance evaluation 

5.1. Simulation setup 

We conducted numerous simulation experiments using the Gowalla 
dataset. The dataset includes both friend relationships and check-in re-
cords. In Fig. 4, we consider users within the Gowalla dataset as workers, 
while their check-in records serve as tasks for our simulations. Specif-
ically, the Gowalla dataset comprises information about social connec-
tions among various users, which we use to simulate the social network 
of workers within the MCS system. Additionally, the dataset’s check-in 
records contain time and location information, which we interpret as 
temporal and spatial constraints of tasks. The simulation settings are 
shown in Table 2. 

In our simulation experiments, we use a Gaussian distribution to 
represent the individual sensing quality q̌a of a single worker wa when 
not collaborating with others, introducing a certain level of randomness. 
That is, q̌a ∼ N

(
μa, σa

2). We assume that workers with stronger social 
influence might engage in more collaborative behaviors with others. 
According to Def. 4, we define χ = {χ1, χ2,⋯, χn} to represent the 
collaborative abilities of individual workers. The data collected by 

workers in a particular task is influenced by both their individual and 
collaborative abilities. 

Based on these assumptions, q̌a reflects the ability of worker wa to 
independently perform tasks, while χab denotes the collaborative degree 
between wa and wb. Therefore, for a worker wa within a team of n 
members, the sensing quality during task tj can be mathematically 
represented as: 

qj
a = q̌j

a⋅
∑n

b=1,a∕=b
χab (24) 

Next, we explored the impact of variations in workers’ individual 
sensing qualities and collaborative abilities on the platform. Due to 
dimensional uncertainties, when conducting simulation experiments, 
we use the coefficients of variation as a reference to provide a clearer 
illustration of the impact of collaboration on the team. In the simulation 
experiments, we adjusted the coefficient of variation for the individual 
sensing qualities cv(q̌) (CVISQ) and the coefficient of variation for 
collaborative abilities cv(χ) (CVCA) of all workers to simulate MCS sys-
tems with different levels of collaboration, defined as follows: 

cv(χ) =
m⋅n⋅Var(χ)
∑m

j=1
∑n

i=1χj
i

(25)  

cv(q̌) =
m⋅n⋅Var(q̌)
∑m

j=1
∑n

i=1q̌j
i

(26)  

5.2. Algorithms for comparison 

Given that our IICA-DWS algorithm primarily focuses on worker 
evaluation and team formation in MCS systems with collaboration, there 
are no existing algorithms directly comparable to ours. Hence, we 
selected algorithms that closely approximate this problem. Specifically, 
we chose IICA-WS, ε-Greedy, and Random as comparative algorithms. 

In the Random algorithm, the platform randomly selects workers 
whose reported bids do not exceed βmax to participate in the tasks. The 
IICA-WS algorithm is a variant of the IICA-DWS algorithm. Unlike the 
IICA-DWS algorithm, the IICA-WS algorithm does not adjust the worker 
evaluation system dynamically. In other words, the regulatory factor γ 
remains as a constant. In our simulation experiments, we set γ = 0.5 and 
z = 1 for the IICA-WS algorithm. It directly reflects the effectiveness of 
the dynamic evaluating method in the IICA-DWS algorithm through γ, 

Fig. 4. Overview of the dataset.  

Table 2 
Simulation settings.  

Parameter name Values 

Number of tasks [50, 550] 
Number of workers [50, 150] 
b [0.1, 0.9] 
z [0.2, 1.0] 
δ [0, 0.8] 
ρ [10, 30] 
CVISQ cv(q̌) [0.5, 1.0] 
CVCA cv(χ) [0.5, 1.5]  
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compared with the IICA-WS algorithm. 
Unlike both the IICA-DWS and IICA-WS algorithms, the ε-Greedy 

algorithm completely disregards collaboration within the team. It cal-
culates the RCRs based on workers’ historical average sensing qualities q 

and the current bids β, i.e., hj
i
+

= qj
i/βj

i, and uses RCR as an indicator for 
greedily selecting workers. The ε-Greedy algorithm employs 
ε(0 ≤ ε ≤ 1) to determine the specific worker selection strategy, where ε 
determines the proportion used for exploration and exploitation by the 
platform. While ensuring platform efficiency, the platform aims to gain 
comprehensive knowledge of candidate workers. Specifically, the plat-
form randomly explores workers with a probability of ε, and it exploits 
by greedily selecting workers with the highest RCRs to join the team 
with a probability of (1 − ε). We chose the ε-Greedy algorithm with ε =

0.3 as a comparative algorithm in our simulation experiments. 
Azzam (Azzam, 2016) proposed the Group-Based Recruitment Sys-

tem (GRS), which aims to effectively recruit participants to complete 
tasks. GRS selects participants based on a genetic algorithm and evalu-
ates the quality and confidence level of the entire group. Instead of 
evaluating the quality of each participant individually, GRS considers 
the overall performance of the entire group. The system forms groups 
based on the distribution of participants in the sensing area, their 
equipment capabilities, and historical performance, and calculates the 
score of each group. Their experiments show that GRS can effectively 
manage resources, optimize the recruitment process of participants, and 
improve the overall efficiency and completion quality of MCS tasks. In 
addition, Stable-GRS (Azzam, Mizouni, et al., 2018) is a version opti-
mized for platform stability based on GRS. It has good effects in 
improving fairness, reducing computation time, and improving quality 
of information. After using GRS as the benchmark in the experiment, we 
found that the performance improvement is similar to that of Stable- 
GRS. Stable-GRS is an optimization method that maintains the stabil-
ity of continuous sensing group recruitment, while the goal of the IICA- 
DWS algorithm is to use the collaboration within the teams to improve 
platform efficiency. It is unfair to compare them directly. Therefore, in 
our experiments, GRS was selected as an algorithm for comparison. 

5.3. Evaluation results 

In this section, we will analyze the performance of various algo-
rithms under different experimental conditions. Experimental results 
indicate that the IICA-DWS algorithm notably outperforms the 
comparative algorithms in terms of platform efficiency and cumulative 
regret in all scenarios. Furthermore, we conducted more specific ex-
periments to demonstrate that the IICA-DWS algorithm achieves the 
highest data quality under the same budget. 

Subsequently, we delved deeper into experiments about worker 
identification and selection within the IICA-DWS algorithm, showcasing 
its exceptional ability to identify and select excellent workers to join the 
team. Moreover, we observed that the IICA-DWS algorithm exhibits 
remarkable stability in worker identification across different conditions. 

We conducted individual experiments on the hyperparameters 
within the IICA-DWS algorithm to explain their functions. Then, we 
suggested how the platform should adjust them based on actual 
circumstances. 

Firstly, we explored the different impacts of CVISQ and CVCA within 
the team on the platform efficiency and cumulative regret of the IICA- 
DWS algorithm and comparative algorithms. Here, platform efficiency 
is defined through Eq. (4). Regret indicates the difference between the 
algorithm’s decision and the optimal solution given the current situa-
tion. From the experimental results, it is evident that the IICA-DWS al-
gorithm outperforms all other algorithms in terms of platform efficiency 
and cumulative regret across various scenarios. Specifically, the per-
formance ratio of IICA-DWS, IICA-WS, ε-Greedy, and Random is depic-
ted in Fig. 5(a). It shows that IICA-DWS performed at least a 16.8 % 
improvement compared to ε-Greedy. Furthermore, the performance of 
IICA-DWS even exceeded three times compared to that of Random. As 
for GRS, it performs relatively stably in various situations. When the 
number of tasks is small, it performs significantly better than IICA-WS, 
and even close to the performance of IICA-DWS. Compared with GRS, 
IICA-DWS has an average performance improvement of 25 %, and a 
maximum performance improvement of 33 %. As shown in Fig. 5(b), 
except for Random, the runtime of other algorithms increases signifi-
cantly with the increase of the number of workers. Among all algo-
rithms, IICA-DWS always has the longest runtime. When the number of 
workers is less than 80, the runtime of IICA-WS is often less than that of 
GRS. When the number of workers is larger, IICA-WS becomes the sec-
ond longest running algorithm, and its growth rate is approximately 
equal to that of IICA-DWS. Specifically, when the number of workers is 
100 and the number of tasks is 300, compared to GRS, IICA-WS takes 
112.4 % of the time, while IICA-DWS takes 165.5 % of the time. 

From Fig. 6, it is evident that as the number of tasks increases, IICA- 
DWS can compute the contributions of workers within the team more 
accurately. Thus, it enables more outstanding workers to join teams, 
thereby enhancing platform efficiency. Additionally, the platform effi-
ciency achievable by IICA-DWS demonstrates a monotonic increase with 
the rise in CVCA and CVISQ, as shown in Fig. 6. This is because an in-
crease in CVCA or CVISQ implies a greater number of workers with 
strong individual or collaborative abilities available within the system. 
With more such workers, IICA-DWS has more opportunities to explore 
and exploit outstanding workers. Consequently, the IICA-DWS algo-
rithm can significantly improve platform efficiency. 

Specifically, compared with IICA-WS and ε-Greedy, IICA-DWS 
showed an average improvement of 27.1 % and 50.8 % in platform ef-
ficiency, reducing regret by an average of 22.1 % and 27.3 %, respec-
tively. As seen in Figs. 7 and 9, when the workers’ CVCA was higher, 
such as cv(χ) = 1.5, cv(q̌) = 0.8, IICA-DWS showed a 62.1 % improve-
ment in platform efficiency over the ε-Greedy algorithm on average. 
However, when the workers’ CVISQ was higher, with cv(χ) = 1.1,
cv(q̌) = 1.0, IICA-DWS only achieved an average increase in platform 
efficiency of 25.8 % over ε-Greedy. This is because individual workers’ 
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Fig. 5. Performance and runtime comparison.  
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sensing qualities and collaborative abilities can be considered as two 
opposing factors in the MCS system. Hence, when one factor’s coeffi-
cient of variation is larger, the effect of the other factor on platform 
efficiency is relatively weakened. It is worth noting that IICA-DWS 
usually performs roughly the same as GRS in the early stages, but 
significantly outperforms GRS in the later stages. This is because IICA- 
DWS needs to explore workers more when there are fewer tasks. This 
severely limits the growth of its platform efficiency. 

In other words, when CVISQ is higher, the individual sensing qual-
ities have a more significant impact on platform efficiency. It means that 
the effect of collaboration on the team is relatively smaller. Conse-
quently, the performance gap between ε-Greedy and IICA-DWS narrows. 
Conversely, when CVCA is larger, the collaboration among workers has 
a greater effect on the sensing results. IICA-DWS can calculate this 
impact better. This results in relatively higher platform efficiency. 

In Fig. 7, it is noticeable that when CVCA is higher, the collaboration 
within the MCS system is more apparent, and the ε-Greedy algorithm’s 
performance is substantially restricted. Additionally, when the number 
of tasks is low, a larger CVCA leads all algorithms to perform closer to 
Random, displaying relatively poorer performance. For instance, as 
shown in Fig. 7, when cv(χ) = 0.9 and there were 50 tasks, IICA-DWS 
improved platform efficiency by 61.3 % over Random. However, at 
cv(χ) = 1.5, this improvement decreased to 43.5 %. This is because both 
IICA-DWS and ε-Greedy algorithms are in an exploration phase with 
fewer tasks. They both primarily assess workers based on sensing 
qualities, while IICA-WS equally employs low-confidence ASVs and 
sensing qualities to evaluate workers. In such a scenario, a larger CVCA 
weakens the impact of individual sensing qualities on results and 
significantly reduces the effectiveness of the algorithms. Thus, it makes 
the algorithms’ performances approach Random. 

As the number of tasks increases, the IICA-DWS’s calculation of 

workers’ ASVs becomes closer to their RCDs, resulting in a better per-
formance than ε-Greedy. Figs. 8 and 10 indicate that the growth rate of 
IICA-DWS’s cumulative regret gradually decreases as the number of 
tasks increases. Eventually, the cumulative regret converges to a rela-
tively small value. This is because when there are fewer tasks, IICA-DWS 
focuses on exploring workers while mainly relying on weighted sensing 
qualities for evaluation. Hence, in the early stages, IICA-DWS performs 
similarly to ε-Greedy, with similar rates of regret accumulation, as 
shown in Figs. 8 and 10. The difference between them is around 9.5 % on 
average. However, as the confidence in ASVs and regulatory factors γ 
increase, the platform calculates workers’ ASVs more accurately. In this 
scenario, the calculated ASVs are much closer to the RCDs of workers. 
Consequently, the cumulative regret generated by IICA-DWS gradually 
diminishes, indicating its ability to select superior workers for the team, 
thereby reducing the platform’s cumulative regret. 

Overall, although the IICA-WS algorithm utilizes ASVs for the 
comprehensive evaluation of workers, the ratio between ASV and 
weighted sensing quality is fixed at 1. Hence, in scenarios with fewer 
tasks, the judgments made about the workers are inaccurate due to the 
low confidence in ASVs. Consequently, the IICA-WS algorithm might 
exhibit poorer performance than the ε-Greedy algorithm in this case. 
Specifically, as shown in Figs. 7 and 9, when there are 100 tasks, the 
platform efficiency of the IICA-WS algorithm was about 12.3 % lower 
than that of the ε-Greedy algorithm on average. 

However, as the number of tasks increases and the platform gains 
higher confidence in workers’ ASVs, the design similar to IICA-DWS 
allows the IICA-WS algorithm to better leverage collaboration among 
workers for evaluation, thereby showing better performance than the 
ε-Greedy algorithm. According to Figs. 7 and 9, when the number of 
tasks reached 200, the platform efficiency of the IICA-WS surpassed that 
of the ε-Greedy by around 7.1 % and continued to increase with more 

Fig. 6. Platform efficiency vs. Number of tasks M.  

Fig. 7. Platform efficiency vs. CVCA c(χ).  
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Fig. 9. Platform efficiency vs. CVISQ c(q̌).  
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Y. Han et al.                                                                                                                                                                                                                                     



Expert Systems With Applications 254 (2024) 124442

17

tasks. Particularly, with fewer tasks, the platform efficiency of IICA-WS 
was approximately 26.3 % lower than that of IICA-DWS. Although its 
performance improves noticeably with more tasks, it cannot fully utilize 
the higher-confidence ASVs due to its fixed regulatory factors. Conse-
quently, it cannot ultimately achieve performance similar to IICA-DWS. 
In the best scenario, the platform efficiency of the IICA-WS algorithm 
was still approximately 13.1 % lower than that of IICA-DWS. Due to the 
characteristics of GRS, it can have a more stable performance in the 
whole process compared to IICA-WS. Specifically, this is because it does 
not need to conduct detailed individual evaluations of each worker, but 
instead scores groups, which greatly reduces the cost of the platform 
spent on exploration, but also makes it unable to have the same high 
performance as IICA-DWS. According to Figs. 7–10, under all experi-
mental conditions, IICA-DWS has an average performance improvement 
of 18.2 % and a 26.8 % reduction in regret compared to GRS. 

Additionally, we investigated the impact of the total budget B on the 
platform’s data quality. We conducted several experiments within the 
range of [100, 150]. And B was increased by 10 in each experiment. 

As depicted in Fig. 11, the experiments demonstrate that the IICA- 
DWS algorithm not only guarantees the highest platform efficiency 
but also maintains the highest data quality under the same budgets. 
According to Fig. 11, the data quality of the IICA-DWS algorithm was 
higher on average by 19.7 % and 47.3 % compared to the IICA-WS and 
ε-Greedy algorithms under the same budget, respectively. It is worth 
noting that at lower values of B, both the IICA-DWS and IICA-WS al-
gorithms exhibited slower growth rates in data quality. Conversely, at 
higher values of B, these algorithms showed a more pronounced in-
crease. Specifically, at B = 100 and B = 150, the average growth rate in 
data quality for the IICA-DWS and IICA-WS algorithms increased by 
approximately 77 %. This indicates that the performance of these two 
algorithms was limited at B = 100 due to the lower budget constraint. 
When the budget is constrained, the IICA-DWS and IICS-WS algorithms 
allocate a larger proportion of the budget for worker exploration. Thus, 
the proportion of the budget utilized for exploitation is reduced, thereby 
having a significant negative impact on the overall data quality. Overall, 
compared with IICA-WS, GRS can provide reliable and stable data 
quality under limited budgets. It is worth noting that under limited 
budgets, GRS performs significantly better than IICA-WS when the 
number of tasks is less than 250, but performs slightly worse than IICA- 
WS when there are more tasks. Compared with GRS, IICA-DWS has an 
average data quality improvement of 19.1 % under all experimental 
conditions. 

To evaluate the algorithm’s worker identification ability, we 
compared workers’ RCDs with the ASVs estimated by the IICA-DWS 

algorithm, as shown in Fig. 12(a). Overall, the IICA-DWS algorithm’s 
estimation of RCD through ASV was relatively accurate, with an average 
discrepancy of about 5.1 %. Furthermore, we noticed that the judgment 
of the IICA-DWS algorithm was more precise for workers with higher 
RCDs. Specifically, for workers with RCDs above 0.6, the estimation 
error of the IICA-DWS algorithm was around 2.6 %. This is because 
workers with higher ASVs in the team tend to be recruited more 
frequently by the platform and accumulate more task records, leading to 
a more accurate evaluation of their ASVs by the platform. However, a 
small fraction of workers with strong comprehensive sensing abilities 
might have lower RCRs due to their higher bids. This limits the growth of 
their recruitment frequency. Thus, there are some obvious deviations 
when we apply the IICA-DWS algorithm to identify these workers. 

To further illustrate the IICA-DWS algorithm’s performance in 
worker selection, we conducted simulation experiments using a 
simplified MCS system. The results depicted in Fig. 12(b) indicate that 
the IICA-DWS algorithm thoroughly explores workers in the early stages 
and accurately selects workers with higher RCDs in the subsequent 
stages. Consequently, in scenarios with fewer tasks, the difference in 
performance between the IICA-DWS algorithm and the comparative 
algorithms was minimal. However, as the number of tasks increases, the 
advantages of the IICA-DWS algorithm become increasingly apparent. 
The algorithm effectively balances exploration and exploitation phases 
within a limited number of tasks. 

We evaluated the identification errors of workers in teams with 
different CVCAs and CVISQs using the IICA-DWS algorithm. Specifically, 
we conducted experiments with CVCAs set to 0.5, 1.0, and 1.5 and 
CVISQs set to 0.5, 0.75, and 1.0. As illustrated in Fig. 13, as the number 
of tasks increased, the identification errors under various CVCAs and 
CVISQs conditions significantly decreased to low values. Especially 
when the number of tasks reached 550, the identification errors were 
reduced by 73.7 % and 72.7 %, respectively. This proves that the IICA- 
DWS algorithm becomes more accurate in identifying workers as the 
number of tasks increases. Remarkably, even with higher CVCAs or 
CVISQs, the identification errors of the IICA-DWS algorithm consistently 
converged to extremely low values. This showcased the algorithm’s 
adaptability to different conditions and strong stability. 

Finally, we investigated the impact of various hyperparameters 
within the IICA-DWS algorithm under different experimental conditions 
on platform efficiency. We comprehensively analyzed the experimental 
results to illustrate their respective functions within the algorithm. 

The update rate of ASV and weighted sensing quality: We con-
ducted multiple experiments within the range of [0.1, 0.9] for the 
hyperparameter b and increased it by 0.2 in each trial. The results are 
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Fig. 11. Data quality vs. Budget B.  
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depicted in Fig. 14(a). In scenarios with fewer tasks, different b in the 
IICA-DWS algorithm showcased relatively similar platform efficiency 
due to the smaller γ. As the number of tasks ranged between 200 and 
350, b = 0.5 demonstrated superior performance. It showed an 
approximate 15.6 % improvement over other b on average. However, 
with the number of tasks within the [400, 550] range, b = 0.7 exhibited 
notably better results. It showed an approximate 17.1 % improvement 

over other b on average. The optimal b for achieving the highest plat-
form efficiency varied across different numbers of tasks. According to 
Eqs. (13–14), b controls the update rate of ASVs and weighted sensing 
qualities: lower b speeds up their updates, while higher value slows them 
down. A smaller b might make the platform overly emphasize current 
sensing results but neglect workers’ historical performance. Thus, it 
results in inaccurate worker evaluation. Conversely, a larger b might 

Fig. 12. Worker selection and identification analysis.  

Fig. 13. Stability analysis.  

Fig. 14. Hyperparameters analysis.  
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cause the platform to overlook shifts in workers’ abilities promptly. As 
the regulatory factor increases, ASV plays a more significant role in the 
platform’s evaluation strategy. Selecting an appropriate b is important 
as it not only facilitates the reasonable update of workers’ ASVs and 
weighted sensing qualities but also ensures that the platform does not 
overly emphasize historical or current sensing results. 

The initialization speed of regulatory factor: In the dynamic 
evaluation system of the IICA-DWS algorithm, the regulatory factor γ is 
of great importance. According to Eq. (17), when there is low confidence 
in ASVs, adjusting the hyperparameter ρ can effectively alter the 
initialization speed of γ, thereby impacting the evaluation strategy of the 
IICA-DWS algorithm. We conducted experiments within the range of 
[10, 30] for ρ, increasing it by 5 in each trial. The results are illustrated 
in Fig. 14(b). When the number of tasks was between 50 and 350, ρ=20 
demonstrated notably better platform efficiency. It showed about a 27.4 
% improvement over other ρ on average. However, when the number of 
tasks exceeded 450, ρ=30 exhibited a more pronounced improvement in 
platform efficiency. On average, it showed approximately an 18.8 % 
improvement over other ρ. This is because a smaller ρ leads the platform 
to lean toward assessing workers’ ASVs without sufficient confidence at 
the lower number of tasks, thereby compromising the accuracy of 
worker evaluations. Conversely, a higher ρ may result in excessive 
exploration of ASVs. With more tasks completed, a larger ρ assists the 
platform in gaining a more comprehensive knowledge of workers’ 
abilities and allows it to make more accurate decisions. 

The exploration for recruiting workers: According to Eqs. 
(22–23), the IICA-DWS algorithm selects workers based on the UCB 
indexes. The hyperparameter δ controls the additive factor. It grants 
workers with less task participation more opportunities for engagement 
in tasks and aids the platform in identifying outstanding workers. As 
shown in Fig. 14(c), we conducted experiments within the range of [0, 
0.8] for δ and incremented it by 0.2 in each trial. δ = 0 means the 
platform does not offer any additional opportunities to workers with less 
task participation. Thus, it makes the system more susceptible to 
randomness. A higher δ indicates the platform offers these workers more 
chances for task participation. However, the experimental results reveal 
that the impact of δ on platform efficiency is not monotonic. For 
instance, with a smaller team of 50 workers, the platform had more 
opportunities to explore workers additionally with the same number of 
tasks. Consequently, δ = 0.6 exhibited the highest platform efficiency. It 
showed an approximate improvement compared to δ = 0 by 6.6 %. Yet, 
with a larger team of 150 workers, the platform invested more resources 
in the initial exploration of workers. In our simulations, a smaller δ = 0.2 
enabled the platform to allocate more resources to the exploitation 
phase and resulted in higher platform efficiency. Specifically, δ = 0.2 
yielded an approximately 11.6 % improvement compared to δ = 0.8 in 
this case. 

The upper limit of the regulatory factor: In MCS systems with 
various types of tasks, the level of collaboration among workers may 
differ significantly. Therefore, in cases where collaboration is weaker, 
relying excessively on ASV for worker evaluation might lead the plat-
form to be more vulnerable to random factors. And it might decrease 
accuracy in worker evaluation. Thus, we defined the hyperparameter z 
in Eq. (16) to control the upper limit of the proportion of the regulatory 
factor in evaluating workers’ comprehensive abilities. We conducted 
experiments within the range of [0.2, 1.0] for z and increased it by 0.2 in 
each trial. The strength of collaboration among workers within the team 
was represented by CVCA, as depicted in Fig. 14(d). From the experi-
mental results, it is evident that with lower CVCAs, a smaller z reduced 
the proportion of ASVs in evaluating workers’ comprehensive abilities, 
contributing to increased platform efficiency. Conversely, when CVCA is 
higher, signifying significant collaboration within the team, a larger z 
helped the platform fully leverage this collaborative relationship, 
thereby enhancing platform efficiency. Specifically, when the CVCA 
ranged between 0.5 and 0.9, z = 0.2 achieved the highest platform ef-
ficiency, averaging an improvement of 7.8 % over other z. Meanwhile, 

when the CVCA ranged between 1.3 and 1.5, z = 1.0 yielded the best 
platform efficiency, showing an average improvement of 8.7 % over 
other z. 

The analysis of these hyperparameters in the IICA-DWS algorithm 
reflects their diverse functions. Thus, the platform can adjust these pa-
rameters based on specific circumstances. Moreover, the platform can 
dynamically update certain hyperparameters to pursue higher platform 
efficiency. 

5.4. Engineering applications 

In fields such as climate, environment, and transportation, as shown 
in Fig. 15, the platform needs to recruit workers to complete various 
tasks. With the development of information technology, it is possible to 
use crowds’ mobile devices to collect a significant amount of spatio-
temporal data, which makes MCS a feasible data-collecting method. 
However, most MCS solutions do not consider the collaborative re-
lationships among workers. Thus, we proposed the IICA-DWS algorithm 
to assess the workers’ individual and collaborative abilities and build 
teams with high efficiency. Consequently, the platform can acquire high- 
quality data at low cost. 

In terms of the climate, we can use the IICA-DWS algorithm to recruit 
workers to measure the composition of the atmosphere efficiently and 
get a wide range of spatiotemporal data. Thus, we are able to evaluate 
and predict the climate of a certain area. Furthermore, we can not only 
make the weather forecast more accurate but also predict the disasters 
caused by the climate to reduce the effect of severe weather. 

In terms of the traffic, we can use MCS to collect data on the traffic 
flow in different spatiotemporal distributions and use IICA-DWS algo-
rithm to improve the sensing efficiency. Thus, an effective traffic flow 
monitoring mechanism can be established. This supports road naviga-
tion, travel guides, parking selection, and so on. 

In terms of the environment, the IICA-DWS algorithm can assist us in 
recruiting workers to detect the spatiotemporal distribution of infor-
mation such as soil composition and water quality. Thus, it enables us to 
establish a powerful environment monitoring system, enhance source 
management, and achieve feasible solutions to deal with pollution. 

In addition, the IICA-DWS algorithm has many potential practical 
applications. In addition to MCS, it may also play a role in problems such 
as Internet of Vehicles and Federated Learning, making the process of 
information collection and processing more efficient. 

Fig. 15. Applications of IICA-DWS.  
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6. Conclusion 

In various fields, it is necessary to collect distributed data, and MCS 
systems play a crucial role. In this work, we consider the collaborative 
relationships among workers and have designed an effective algorithm 
for dynamic worker evaluation and team formation named IICA-DWS. 

The IICA-DWS algorithm provides a dynamic worker evaluation 
approach called IICAE, which computes the comprehensive abilities of 
workers within a team. Specifically, the IICA-DWS algorithm offers an 
approximate method for calculating workers’ contributions. Simulta-
neously, the IICAE approach can adjust the platform’s evaluation of 
workers in various situations to approximate optimal results. Moreover, 
the IICA-DWS algorithm forms teams by considering workers’ compre-
hensive sensing abilities and social situations. Thus, we can improve the 
collaboration within teams and achieve higher platform efficiency. Its 
team formation process adopts an MAB-based model and balances the 
platform’s exploration and exploitation of workers. It also ensures the 
effectiveness of worker evaluations, platform rationality, and fairness. 

Finally, extensive simulation experiments conducted on real datasets 
demonstrate that our algorithm can select more outstanding workers 
and significantly improve platform efficiency and data quality compared 
to other algorithms. Additionally, when collaboration within teams is 
more apparent, the IICA-DWS algorithm exhibits considerable im-
provements. The IICA-DWS algorithm also provides theoretical gua-
rantees on feasibility and can be easily popularized. 
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